Читать книгу A New Era of Thought - Charles Howard Hinton - Страница 6
INTRODUCTION.
ОглавлениеThere are no new truths in this book, but it consists of an effort to impress upon and bring home to the mind some of the more modern developments of thought. A few sentences of Kant, a few leading ideas of Gauss and Lobatschewski form the material out of which it is built up.
It may be thought to be unduly long; but it must be remembered that in these times there is a twofold process going on—one of discovery about external nature, one of education, by which our minds are brought into harmony with that which we know. In certain respects we find ourselves brought on by the general current of ideas—we feel that matter is permanent and cannot be annihilated, and it is almost an axiom in our minds that energy is persistent, and all its transformations remains the same in amount. But there are other directions in which there is need of definite training if we are to enter into the thoughts of the time.
And it seems to me that a return to Kant, the creator of modern philosophy, is the first condition. Now of Kant’s enormous work only a small part is treated here, but with the difference that should be found between the work of a master and that of a follower. Kant’s statements are taken as leading ideas, suggesting a field of work, and it is in detail and manipulation merely that there is an opportunity for workmanship.
Of Kant’s work it is only his doctrine of space which is here experimented upon. With Kant the perception of things as being in space is not treated as it seems so obvious to do. We should naturally say that there is space, and there are things in it. From a comparison of those properties which are common to all things we obtain the properties of space. But Kant says that this property of being in space is not so much a quality of any definable objects, as the means by which we obtain an apprehension of definable objects—it is the condition of our mental work.
Now as Kant’s doctrine is usually commented on, the negative side is brought into prominence, the positive side is neglected. It is generally said that the mind cannot perceive things in themselves, but can only apprehend them subject to space conditions. And in this way the space conditions are as it were considered somewhat in the light of hindrances, whereby we are prevented from seeing what the objects in themselves truly are. But if we take the statement simply as it is—that we apprehend by means of space—then it is equally allowable to consider our space sense as a positive means by which the mind grasps its experience.
There is in so many books in which the subject is treated a certain air of despondency—as if this space apprehension were a kind of veil which shut us off from nature. But there is no need to adopt this feeling. The first postulate of this book is a full recognition of the fact, that it is by means of space that we apprehend what is. Space is the instrument of the mind.
And here for the purposes of our work we can avoid all metaphysical discussion. Very often a statement which seems to be very deep and abstruse and hard to grasp, is simply the form into which deep thinkers have thrown a very simple and practical observation. And for the present let us look on Kant’s great doctrine of space from a practical point of view, and it comes to this—it is important to develop the space sense, for it is the means by which we think about real things.
There is a doctrine which found much favour with the first followers of Kant, that also affords us a simple and practical rule of work. It was considered by Fichte that the whole external world was simply a projection from the ego, and the manifold of nature was a recognition by the spirit of itself. What this comes to as a practical rule is, that we can only understand nature in virtue of our own activity; that there is no such thing as mere passive observation, but every act of sight and thought is an activity of our own.
Now according to Kant the space sense, or the intuition of space, is the most fundamental power of the mind. But I do not find anywhere a systematic and thoroughgoing education of the space sense. In every practical pursuit it is needed—in some it is developed. In geometry it is used; but the great reason of failure in education is that, instead of a systematic training of the space sense, it is left to be organized by accident and is called upon to act without having been formed. According to Kant and according to common experience it will be found that a trained thinker is one in whom the space sense has been well developed.
With regard to the education of the space sense, I must ask the indulgence of the reader. It will seem obvious to him that any real pursuit or real observation trains the space sense, and that it is going out of the way to undertake any special discipline.
To this I would answer that, according to my own experience, I was perfectly ignorant of space relations myself before I actually worked at the subject, and that directly I got a true view of space facts a whole series of conceptions, which before I had known merely by repute and grasped by an effort, became perfectly simple and clear to me.
Moreover, to take one instance: in studying the relations of space we always have to do with coloured objects, we always have the sense of weight; for if the things themselves have no weight, there is always a direction of up and down—which implies the sense of weight, and to get rid of these elements requires careful sifting. But perhaps the best point of view to take is this—if the reader has the space sense well developed he will have no difficulty in going through the part of the book which relates to it, and the phraseology will serve him for the considerations which come next.
Amongst the followers of Kant, those who pursued one of the lines of thought in his works have attracted the most attention and have been considered as his successors. Fichte, Schelling, Hegel have developed certain tendencies and have written remarkable books. But the true successors of Kant are Gauss and Lobatchewski.
For if our intuition of space is the means by which we apprehend, then it follows that there may be different kinds of intuitions of space. Who can tell what the absolute space intuition is? This intuition of space must be coloured, so to speak, by the conditions of the being which uses it.
Now, after Kant had laid down his doctrine of space, it was important to investigate how much in our space intuition is due to experience—is a matter of the physical circumstances of the thinking being—and how much is the pure act of the mind.
The only way to investigate this is the practical way, and by a remarkable analysis the great geometers above mentioned have shown that space is not limited as ordinary experience would seem to inform us, but that we are quite capable of conceiving different kinds of space.
Our space as we ordinarily think of it is conceived as limited—not in extent, but in a certain way which can only be realized when we think of our ways of measuring space objects. It is found that there are only three independent directions in which a body can be measured—it must have height, length and breadth, but it has no more than these dimensions. If any other measurement be taken in it, this new measurement will be found to be compounded of the old measurements. It is impossible to find a point in the body which could not be arrived at by travelling in combinations of the three directions already taken.
But why should space be limited to three independent directions?
Geometers have found that there is no reason why bodies should be thus limited. As a matter of fact all the bodies which we can measure are thus limited. So we come to this conclusion, that the space which we use for conceiving ordinary objects in the world is limited to three dimensions. But it might be possible for there to be beings living in a world such that they would conceive a space of four dimensions. All that we can say about such a supposition is, that it is not demanded by our experience. It may be that in the very large or the very minute a fourth dimension of space will have to be postulated to account for parts—but with regard to objects of ordinary magnitudes we are certainly not in a four dimensional world.
And this was the point at which about ten years ago I took up the inquiry.
It is possible to say a great deal about space of higher dimensions than our own, and to work out analytically many problems which suggest themselves. But can we conceive four-dimensional space in the same way in which we can conceive our own space? Can we think of a body in four dimensions as a unit having properties in the same way as we think of a body having a definite shape in the space with which we are familiar?
Now this question, as every other with which I am acquainted, can only be answered by experiment. And I commenced a series of experiments to arrive at a conclusion one way or the other.
It is obvious that this is not a scientific inquiry—but one for the practical teacher.
And just as in experimental researches the skilful manipulator will demonstrate a law of nature, the less skilled manipulator will fail; so here, everything depended on the manipulation. I was not sure that this power lay hidden in the mind, but to put the question fairly would surely demand every resource of the practical art of education.
And so it proved to be; for after many years of work, during which the conception of four-dimensional bodies lay absolutely dark, at length, by a certain change of plan, the whole subject of four-dimensional existence became perfectly clear and easy to impart.
There is really no more difficulty in conceiving four-dimensional shapes, when we go about it the right way, than in conceiving the idea of solid shapes, nor is there any mystery at all about it.
When the faculty is acquired—or rather when it is brought into consciousness, for it exists in every one in imperfect form—a new horizon opens. The mind acquires a development of power, and in this use of ampler space as a mode of thought, a path is opened by using that very truth which, when first stated by Kant, seemed to close the mind within such fast limits. Our perception is subject to the condition of being in space. But space is not limited as we at first think.
The next step after having formed this power of conception in ampler space, is to investigate nature and see what phenomena are to be explained by four-dimensional relations.
But this part of the subject is hardly one for the same worker as the one who investigates how to think in four-dimensional space. The work of building up the power is the work of the practical educator, the work of applying it to nature is the work of the scientific man. And it is not possible to accomplish both tasks at the same time. Consequently the crown is still to be won. Here the method is given of training the mind; it will be an exhilarating moment when an investigator comes upon phenomena which show that external nature cannot be explained except by the assumption of a four-dimension space.
The thought of the past ages has used the conception of a three-dimensional space, and by that means has classified many phenomena and has obtained rules for dealing with matters of great practical utility. The path which opens immediately before us in the future is that of applying the conception of four-dimensional space to the phenomena of nature, and of investigating what can be found out by this new means of apprehension.
In fact, what has been passed through may be called the three-dimensional era; Gauss and Lobatchewski have inaugurated the four-dimensional era.