Читать книгу Euclid and His Modern Rivals - Charles Lutwidge Dodgson - Страница 8
Preliminaries to examination of Modern Rivals.
Оглавление Table of Contents
Scene I.
[Minos and Rhadamanthus.]
PAGE
Consequences of allowing the use of various Manuals of Geometry: that we must accept | |
(1) | 'Circular' arguments… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 1 |
(2) | Illogical do… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 2 |
| Example from Cooley… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 2„ |
| Example„ from„ Wilson… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 4 |
Scene II.
[Minos and Euclid.]
§ I. A priori reasons for retaining Euclid's Manual.
We require, in a Manual, a selection rather than a complete repertory of Geometrical truths… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … | 6 |
Discussion limited to subject-matter of Euc. I, II.… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 8 |
One fixed logical sequence essential… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 8„ |
One system of numbering desirable… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 10 |
A priori claims of Euclid's sequence and numeration to be retained… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 11 |
New Theorems might be interpolated without change of numeration… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 11„ |
§ 2. Method of procedure in examining Modern Rivals.
Proposed changes which, even if proved to be essential, would not necessitate the abandonment of Euclid's Manual:—… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 13 |
(1) | Propositions to be omitted; | |
(2) | Propositions„ to be replaced by new proofs; | |
(3) | New Propositions to be added. | |
Proposed changes which, if proved to be essential, would necessitate such abandonment:—… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … | 15 |
(1) | Separation of Problems and Theorems; | |
(2) | Different treatment of Parallels. | |
Other subjects of enquiry:—… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 15 |
(4) | Use of diagonals in Euc. II; | |
(6) | Treatment„ of Angles; | |
(7) | Euclid's Propositions omitted; | |
(8) | Euclid's„ Propositions„ newly treated; | |
List of authors to be examined, viz.:—… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 16 |
| Legendre, Cooley, Cuthbertson, Henrici, Wilson, Pierce, Willock, Chauvenet, Loomis, Morell, Reynolds, Wright, Syllabus of Association for Improvement of Geometrical Teaching, Wilson's 'Syllabus'-Manual. | |
§ 3. The combination, or separation of Problems and Theorems.
Reasons assigned for separation… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 18 |
Reasons for combination:—… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 19 |
(1) | Problems are also Theorems; | |
(2) | Separation would necessitate a new numeration, | |
(3) | and hypothetical constructions. | |
§ 4. Syllabus of propositions relating to Pairs of Lines.
Three classes of Pairs of Lines:—… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 20 |
(1) | Having two common points; | |
(2) | Having a common point and a separate point; | |
(3) | Having„ no common point. | |
Four kinds of 'properties';… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 21 |
(1) | common or separate points; | |
(2) | equality, or otherwise, of angles made with transversals; | |
(3) | equidistance, or otherwise, of points on the one from the others; | |
Conventions as to language… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 22 |
Propositions divisible into two classes:—… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 23 |
(1) | Deducible from undisputed Axioms; | |
(2) | Deducible from„ disputable Axioms„ | |
Three classes of Pairs of Lines:—… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 23„ |
Subjects and predicates of Propositions concerning these three classes:— | |
| Coincidental… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 24 |
| Intersectional… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 26 |
| Separational… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 27 |
Table I. Containing twenty Propositions, of which some are undisputed Axioms, and the rest real and valid Theorems, deducible from undisputed Axioms… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 28 |
Subjects and predicates of other propositions concerning Separational Lines… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 33 |
Table II. Containing eighteen Propositions, of which no one is an undisputed Axiom, but all are real and valid Theorems, which, though not deducible from undisputed Axioms, are such that, if any one be admitted as an Axiom, the rest can be proved… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 34 |
Table III. Containing five Propositions, taken from Table II, which have been proposed as Axioms… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 37 |
(4) | Playfair's psonAxiom„ | |
It will be shown (in Appendix III) that any Theorem of Table II is sufficient logical basis for all the rest… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 38 |
§ 5. Playfair's Axiom.
Is Euclid's 12th Axiom axiomatic?… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 40 |
Need of test for meeting of finite Lines… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 41 |
Considerations which make Euclid's Axiom more axiomatic… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 42 |
Euclid's Axiom deducible from Playfair's… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 45 |
Reasons for preferring Euclid's Axiom:— | |
(1) | Playfair's does not show which way the Lines will meet;… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 46 |
(2) | Playfair's asserts more than Euclid's, the additional matter being superfluous.… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 46„ |
Objection to Euclid's Axiom (that it is the converse of I. 17) untenable… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 47 |
§ 6. Principle of Superposition.
Used by Moderns in Euc. I. 5… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 48 |
Used by Moderns„ in Euc.„ I. 24… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 49 |
§ 7. Omission of Diagonals in Euc. II.
Proposal tested by comparing Euc. II. 4, with Mr. Wilson's version of it… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … | 50 |