Читать книгу Chance, Love, and Logic - Charles S. Peirce - Страница 5
I
ОглавлениеPeirce was by antecedents, training, and occupation a scientist. He was a son of Benjamin Peirce, the great Harvard mathematician, and his early environment, together with his training in the Lawrence Scientific School, justified his favorite claim that he was brought up in a laboratory. He made important contributions not only in mathematical logic but also in photometric astronomy, geodesy, and psychophysics, as well as in philology. For many years Peirce worked on the problems of geodesy, and his contribution to the subject, his researches on the pendulum, was at once recognized by European investigators in this field. The International Geodetic Congress, to which he was the first American representative, gave unusual attention to his paper, and men like Cellerier and Plantamour acknowledged their obligations to him.[1]
This and other scientific work involving fine measurement, with the correlative investigations into the theory of probable error, seem to have been a decisive influence in the development of Peirce’s philosophy of chance. Philosophers inexperienced in actual scientific measurement may naïvely accept as absolute truth such statements as “every particle of matter attracts every other particle directly as the product of their masses and inversely as the square of the distance,” or “when hydrogen and oxygen combine to form water the ratio of their weights is 1 : 8.” But to those who are actually engaged in measuring natural phenomena with instruments of precision, nature shows no such absolute constancy or simplicity. As every laboratory worker knows, no two observers, and no one observer in successive experiments, get absolutely identical results. To the men of the heroic period of science this was no difficulty. They held unquestioningly the Platonic faith that nature was created on simple geometric lines, and all the minute variations were attributable to the fault of the observer or the crudity of his instruments. This heroic faith was, and still is, a most powerful stimulus to scientific research and a protection against the incursions of supernaturalism. But few would defend it to-day in its explicit form, and there is little empirical evidence to show that while the observer and his instruments are always varying, the objects which he measures never deviate in the slightest from the simple law. Doubtless, as one becomes more expert in the manipulation of physical instruments, there is a noticeable diminution of the range of the personal “error,” but no amount of skill and no refinement of our instruments have ever succeeded in eliminating irregular, though small, variations. “Try to verify any law of nature and you will find that the more precise your observations, the more certain they will be to show irregular departure from the law.”[2] There is certainly nothing in our empirical information to prevent us from saying that all the so-called constants of nature are merely instances of variation between limits so near each other that their differences may be neglected for certain purposes. Moreover, the approach to constancy is observed only in mass phenomena, when we are dealing with very large numbers of particles; but social statistics also approach constant ratios when the numbers are very large. Hence, without denying discrepancies due solely to errors of observation, Peirce contends that “we must suppose far more minute discrepancies to exist owing to the imperfect cogency of the law itself, to a certain swerving of the facts from any definite formula.”[3]
It is usual to associate disbelief in absolute laws of nature with sentimental claims for freedom or theological miracles. It is, therefore, well to insist that Peirce’s attack is entirely in the interests of exact logic and a rational account of the physical universe. As a rigorous logician familiar with the actual procedures by which our knowledge of the various laws of nature is obtained, he could not admit that experience could prove their claim to absoluteness. All the physical laws actually known, like Boyle’s law or the law of gravitation, involve excessive simplification of the phenomenal course of events, and thus a large element of empirical inaccuracy. But a more positive objection against the traditional assumption of absolute or invariable laws of nature, is the fact that such assumption makes the regularities of the universe ultimate, and thus cuts us off from the possibility of ever explaining them or how there comes to be as much regularity in the universe as there is. But in ordinary affairs, the occurrence of any regularity is the very thing to be explained. Moreover, modern statistical mechanics and thermodynamics (theory of gases, entropy, etc.) suggest that the regularity in the universe is a matter of gradual growth; that the whole of physical nature is a growth from a chaos of diversity to a maximum of uniformity or entropy. A leading physicist of the 19th Century, Boltzmann, has suggested that the process of the whole physical universe is like that of a continuous shaking up of a hap-hazard or chance mixture of things, which thus gradually results in a progressively more uniform distribution. Since Duns Scotus, students of logic have known that every real entity has its individual character (its haecceitas or thisness) which cannot be explained or deduced from that which is uniform. Every explanation, for example, of the moon’s path must take particular existences for granted. Such original or underived individuality and diversity is precisely what Peirce means by chance; and from this point of view chance is prior to law.
All that is necessary to visualize this is to suppose that there is an infinitesimal tendency in things to acquire habits, a tendency which is itself an accidental variation grown habitual. We shall then be on the road to explain the evolution and existence of the limited uniformities actually prevailing in the physical world.
A good deal of the foregoing may sound somewhat mythologic. But even if it were so it would have the merit of offering a rational alternative to the mechanical mythology according to which all the atoms in the universe are to-day precisely in the same condition in which they were on the day of creation, a mythology which is forced to regard all the empirical facts of spontaneity and novelty as illusory, or devoid of substantial truth.
The doctrine of the primacy of chance naturally suggests the primacy of mind. Just as law is a chance habit so is matter inert mind. The principal law of mind is that ideas literally spread themselves continuously and become more and more general or inclusive, so that people who form communities of any sort develop general ideas in common. When this continuous reaching-out of feeling becomes nurturing love, such, e.g., which parents have for their offspring or thinkers for their ideas, we have creative evolution.
James and Royce have called attention to the similarity between Peirce’s doctrine of tychistic-agapism (chance and love) and the creative evolution of Bergson. But while both philosophies aim to restore life and growth in their account of the nature of things, Peirce’s approach seems to me to have marked advantages, owing to its being in closer touch with modern physics. Bergson’s procedure is largely based on the contention that mechanics cannot explain certain empirical facts, such as the supposed identity of the vertebrate eye and the eye of the scallop. But the fact here is merely one of a certain resemblance of pattern, which may well be explained by the mechanical principles of convergent evolution. Peirce’s account involves no rejection of the possibility of mechanical explanations. Indeed, by carrying chance into the laws of mechanics he is enabled to elaborate a positive and highly suggestive theory of protoplasm to explain the facts of plasticity and habit.[4] Instead of postulating with Spencer and Bergson a continuous growth of diversity, Peirce allows for growth of habits both in diversity and in uniformity. The Spencerian mechanical philosophy reduces all diversity to mere spatial differences. There can be no substantial novelty; only new forms or combinations can arise in time. The creative evolution of Bergson though intended to support the claims of spontaneity is still like the Spencerian in assuming all evolution as proceeding from the simple to the complex. Peirce allows for diversity and specificity as part of the original character or endowment of things, which in the course of time may increase in some respects and diminish in others. Mind acquires the habit both of taking on, and also of laying aside, habits. Evolution may thus lead to homogeneity or uniformity as well as to greater heterogeneity.
Not only has Peirce a greater regard than even Bergson for the actual diversity and spontaneity of things, but he is in a much better position than any other modern philosopher to explain the order and coherence of the world. This he effects by uniting the medieval regard for the reality of universals with the modern scientific use of the concept of continuity. The unfortunate war between the pioneers of modern science and the adherents of the scholastic doctrine of substantial forms, has been one of the great misfortunes of human thought, in that it made absolute atomism and nominalism the professed creed of physical science. Now, extreme nominalism, the insistence on the reality of the particular, leaves no room for the genuine reality of law. It leaves, as Hume had the courage to admit, nothing whereby the present can determine the future; so that anything is as likely to happen as not. From such a chaotic world, the procedure of modern natural and mathematical science has saved us by the persistent use of the principle of continuity; and no one has indicated this more clearly than Peirce who was uniquely qualified to do so by being a close student both of Duns Scotus and of modern scientific methods.
It is instructive in this respect to contrast the views of Peirce and James. James, who so generously indicated his indebtedness to Peirce for his pragmatism, was also largely indebted to Peirce for his doctrine of radical empiricism.[5] The latter doctrine seeks to rescue the continuity and fluidity of experience from the traditional British empiricism or nominalism, which had resolved everything into a number of mutually exclusive mental states. It is curious, however, that while in his psychology James made extensive use of the principle of continuity, he could not free himself from British nominalism in his philosophy—witness the extreme individualism of his social philosophy or the equally extreme anthropomorphism of his religion. Certain of Peirce’s suggestions as to the use of continuity in social philosophy have been developed by Royce in his theory of social consciousness and the nature of the community;[6] but much remains to be worked out and we can but repeat Peirce’s own hope: “May some future student go over this ground again and have the leisure to give his results to the world.”
It is well to note, however, that after writing the papers included in this volume Peirce continued to be occupied with the issues here raised. This he most significantly indicated in the articles on logical topics contributed to Baldwin’s Dictionary of Philosophy.[7]
In these articles it is naturally the logical bearing of the principles of tychism (chance), synechism (continuity), and agapism (love) that is stressed. To use the Kantian terminology, almost native to Peirce, the regulative rather than the constitutive aspect of these principles is emphasized. Thus the doctrine of chance is not only what it was for James’ radical empiricism, a release from the blind necessity of a “block universe,” but also a method of keeping open a possible explanation of the genesis of the laws of nature and an interpretation of them in accordance with the theorems of probability, so fruitful in physical science as well as in practical life. So the doctrine of love is not only a cosmologic one, showing how chance feeling generates order or rational diversity through the habit of generality or continuity, but it also gives us the meaning of truth in social terms, in showing that the test as to whether any proposition is true postulates an indefinite number of co-operating investigators. On its logical side the doctrine of love (agapism) also recognized the important fact that general ideas have a certain attraction which makes us divine their nature even though we cannot clearly determine their precise meaning before developing their possible consequences.
Of the doctrine of continuity we are told expressly[8] that “synechism is not an ultimate absolute metaphysical doctrine. It is a regulative principle of logic,” seeking the thread of identity in diverse cases and avoiding hypotheses that this or that is ultimate and, therefore, inexplicable. (Examples of such hypotheses are: the existence of absolutely accurate or uniform laws of nature, the eternity and absolute likeness of all atoms, etc.) To be sure, the synechist cannot deny that there is an element of the inexplicable or ultimate, since it is directly forced upon him. But he cannot regard it as a source of explanation. The assumption of an inexplicability is a barrier on the road to science. “The form under which alone anything can be understood is the form of generality which is the same thing as continuity.”[9] This insistence on the generality of intelligible form is perfectly consistent with due emphases on the reality of the individual, which to a Scotist realist connotes an element of will or will-resistence, but in logical procedure means that the test of the truth or falsity of any proposition refers us to particular perceptions.[10] But as no multitude of individuals can exhaust the meaning of a continuum, which includes also organizing relations of order, the full meaning of a concept cannot be in any individual reaction, but is rather to be sought in the manner in which all such reactions contribute to the development of the concrete reasonableness of the whole evolutionary process. In scientific procedure this means that integrity of belief in general is more important than, because it is the condition of, particular true beliefs.