Читать книгу Грохочение угля - Данил Александрович Полулях - Страница 7
Глава 1. Общие сведения о грохочении полезных ископаемых
1.3. Гранулометрический состав
1.3.4. Уравнения характеристик крупности
ОглавлениеЕсли логарифмическая суммарная характеристика по минусу прямолинейная, то для такого материала гранулометрический состав можно представить уравнением.
Уравнение прямой линии в логарифмических координатах
Переходя к антилогарифмам, получим
Это уравнение суммарной характеристики, построенной «по минус х», известно под названием уравнения Годэна-Андреева [3].
Величина показателя k определяет направление и степень изгиба кривой характеристики. Если характеристику построить «по плюс x», то она будет: при k>1 – выпуклой, при k=1 – прямой, при k<1 – вогнутой. Следовательно, по величине показателя k можно судить о преобладании в материале крупных или мелких зерен.
Величина параметра А, при данном показателе k, зависит от величины xmax (диаметра максимального зерна материала).
Уравнение характеристики позволяет решать ряд задач, например: определять число зерен в любом классе, поверхность зерен, удельную поверхность и т. п.
Параметры уравнения находятся следующим образом. На логарифмической характеристике выбираются две точки, соответствующие двум наиболее удаленным диаметрам, и определяется показатель k как тангенс угла наклона прямой
Параметр А находится подставкой значения k в уравнение (1.12) для одной из точек.
Если диаметр зерен брать по отношению к диаметру максимального куска в материале, то уравнение Годэна-Андреева преобразуется в «приведенное» уравнение с одним постоянным параметром
или, если y выражено в долях единицы, то
Показатель k находят описанным выше вычислением или, если принять за исходные для расчета x2 и x1=1/2x2, то
Обработка большого количества гранулометрических анализов продуктов дробления и измельчения показала, что во многих случаях лучшее соответствие опытным данным, по сравнению с уравнением Годэна-Андреева, дает уравнение, предложенное Розиным и Раммлером [3]
где R – суммарный выход класса крупнее х (по плюсу), %; x – размер отверстий сита; b и n – параметры, зависящие от свойств материала и размерности величины х.
Соответствие опытных данных уравнению (1.20) можно проверить графическим путем нанесения опытных точек на функциональную координатную систему. При двойном последовательном логарифмировании уравнения (1.20) последнее приобретает вид
Пример построения такого графика (по данным табл. 1.5) показан на рис. 1.13.
Таблица 1.5
Гранулометрический состав исследуемого материала
Рис. 1.13. Характеристика крупности по Розину и Раммлеру
На осях против соответствующих логарифмических величин написаны значения выходов классов и диаметров зерен материала.
Параметры уравнения (1.20) b и n находят по двум известным точкам, решая систему уравнений:
При совместном решении получим
что, впрочем, можно написать и сразу по графику рис. 1.13. Зная n, определяем b:
Для примера по данным табл. 1.5 составлено следующее уравнение характеристики крупности материала:
Таблица 1.6
Уравнения гранулометрических характеристик крупности частиц
Уравнение Розина-Раммлера охватывает опытные точки в широком диапазоне крупностей, но оно не удовлетворяет одному конечному условию: нулевой выход классов достигается только при бесконечно большой крупности материала
При использовании уравнения Розина-Раммлера приходится считаться с этим обстоятельством и принимать конечную крупность материала, соответствующую какому-то определенному значению выхода класса.
В табл. 1.6 приведены наиболее известные уравнения гранулометрических характеристик частиц.