Randomised Clinical Trials

Randomised Clinical Trials
Автор книги: id книги: 2058048     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 9567,71 руб.     (97,35$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Медицина Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119524670 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Randomi sed Clinical Trials: Design, Practice and Reporting  provides a detailed overview of the methodology for conducting clinical trials, including developing protocols, data capture, randomisation, analysis and reporting. Assuming no prior background, this user-friendly resource describes the statistical, regulatory, and practical components required for conducting randomised clinical trials. Numerous examples and case studies from industry, academia, and the research literature help readers understand each stage of the clinical trial process.  This second edition contains extensively revised material throughout, including new chapters covering designs for repeated measures, non-inferiority, cluster and stepped wedge trials. Other new chapters describe data and safety monitoring, biomarker studies, and feasibility studies. Updated and expanded sections discuss situations where multiple organs, different body locations or competing risks are involved, subgroup analysis, and multiple outcomes. Written by an author team with extensive experience in conducting clinical trials, this book:  Provides comprehensive coverage of randomised clinical trials, ranging from basic to advanced Features several new chapters, updated case studies and examples, and references to changes in regulations Explains basic randomised trials, including the parallel two-group controlled trial with a single outcome measure Covers paired trial designs and trials with more than two interventions Includes a chapter on miscellaneous topics such as adaptive designs, large simple trials, Bayesian methods for very small trials, alpha-spending functions and the predictive probability test  Randomi sed Clinical Trials  is essential reading for clinicians, nurses, data managers, and medical statisticians involved in clinical trials, and for health practitioners responsible for direct patient care in a clinical trial setting.

Оглавление

David Machin. Randomised Clinical Trials

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Randomised Clinical Trials. Design, Practice and Reporting

Preface

CHAPTER 1 Introduction

1.1 Introduction

1.2 Some completed trials

Example 1.1 Small parallel two‐group design – gastrointestinal function

Example 1.2 Parallel two‐group design – hepatitis B

Example 1.3 Unstructured three‐group design – newly diagnosed type 2 diabetes

Example 1.4 Small dose–response design – pain prevention following hand surgery

Example 1.5 Large dose–response design – HER2‐positive breast cancer

Example 1.6 Non‐inferiority trial – uncomplicated falciparum malaria

Example 1.7 Repeated measures – atopic eczema

Example 1.8 Cross‐over trial – known or suspected hypertension

Example 1.9 Paired design – glaucoma

Example 1.10 Split‐mouth design – implants for edentulous sites

Example 1.11 Cluster trial – hip protectors for the elderly

Example 1.12 Single arm – discrete de novo lesions in a coronary artery

1.3 Choice of design. 1.3.1 Biological variability

Example 1.13 Patient‐to‐patient variability – atopic eczema

1.3.2 Randomisation

1.3.3 Design hierarchy

1.3.3.1 Randomisation

1.3.3.2 Blinding or masking

1.3.3.3 Non‐randomised designs

Example 1.14 Glioblastoma in the elderly – non‐randomised design

1.3.3.4 Case series

1.4 Practical constraints

1.5 Influencing clinical practice

1.6 History

1.7 How do trials arise?

1.8 Ethical considerations

1.9 Regulatory requirements

1.10 Focus

1.11 Further reading

CHAPTER 2 Design Features

2.1 Introduction

Example 2.1 Two‐group parallel design – symptomatic oral lichen planus

2.2 The research question

2.3 Patient selection

Example 2.2 Trial eligibility – partial thickness burns

2.4 The consent process

2.5 Choice of interventions

2.5.1 Standard or control treatment

Example 2.3 Placebo controlled trial – advanced hepatocellular carcinoma

Example 2.4 Schizophrenia and schizophreniform disorder

2.5.2 Test treatment

2.6 Choice of design

2.7 Assigning the interventions

Example 2.5 Delay to start of treatment – inoperable non‐small‐cell lung cancer

2.8 Making the assessments

2.9 Analysis and reporting

2.9.1 Which patients to analyse

Example 2.6 Immediate start of treatment– children with fever

2.9.1.1 Intention‐to‐treat (ITT)

2.9.1.2 Per‐protocol

2.9.2 Trial publication

2.10 Technical details. 2.10.1 Statistical models

2.10.2 Fitting the model

2.10.3 Choice of design

2.10.4 Randomisation

2.11 Guidelines

2.12 Further reading

CHAPTER 3 The Trial Protocol

3.1 Introduction

3.2 Abstract

Example 3.1 Protocol SQGL02 (1999): Brimonidine as a neuroprotective agent in acute angle‐closure glaucoma (AACG)

Example 3.2 Protocol SQCP01 (2006): Comparing speech and growth outcomes between two different techniques and two different timings of surgery in the management of clefts of the secondary palate

3.3 Background

3.4 Research objectives

3.4.1 Objectives

Example 3.3 Protocol SQNP01 (1997): Standard radiotherapy versus concurrent chemo‐radiotherapy followed by adjuvant chemotherapy for locally advanced (non‐metastatic) nasopharyngeal cancer

Example 3.4 Protocol PRESSURE (2000) Part Section 2: Pressure‐relieving support surfaces: a randomised evaluation. 2. RESEARCH OBJECTIVES. 2.1 Primary objective

2.2 Secondary objective

3.4.2 Outcome measures

Example 3.5 Protocol PRESSURE (2000) Part Section 9.1: Pressure‐relieving support surfaces: a randomised evaluation. 9.1 Primary endpoint. 9.1.1 Development of new pressure sores

9.2 Secondary endpoints. 9.2.1 Healing of existing pressure sores

9.2.2 Patient acceptability

Example 3.6 Protocol AHCC01 (1997): Randomised trial of tamoxifen versus placebo for the treatment of inoperable hepatocellular carcinoma

3.5 Design

Example 3.7 Protocol PRESSURE (2000): Pressure‐relieving support surfaces: a randomised evaluation. 3. DESIGN

3.6 Intervention details

Example 3.8 Protocol PRESSURE (2000): Pressure‐relieving support surfaces: a randomised evaluation

Example 3.9 Protocol SQNP01 (1997): Standard radiotherapy versus concurrent chemo‐radiotherapy followed by adjuvant chemotherapy for locally advanced (non‐metastatic) nasopharyngeal cancer

Example 3.10 Protocol SQOLP01 (1999): Comparison of steroid with cyclosporine for the topical treatment of oral lichen planus. Dose and duration. Steroid (S) – Triamcinolone acetonide 0.1% in oral base (Kenalog)

Cyclosporine (C) – Sandimmun Neoral solution 100 mg cyclosporine/ml

Application of topical medication

Dose modification

Example 3.11 Protocol ENSG5 (1990): Comparison of high dose rapid schedule with conventional schedule chemotherapy for stage 4 neuroblastoma over the age of 1 year. 12. MODIFICATION OF THERAPY DUE TO TOXICITY

3.7 Eligibility

Example 3.12 Protocol UKW3 (1992): Preoperative chemotherapy in Wilms’ tumour. 4. ELIGIBILITY

Example 3.13 Protocol PRESSURE (2000) Section 6.2: Pressure‐relieving support surfaces: a randomised evaluation. 6.2 Exclusion criteria

3.8 Randomisation

3.8.1 Design

Example 3.14 Protocol PRESSURE (2000) Section 7.2: Pressure‐relieving support surfaces: a randomised evaluation. 7.2 Mattress Allocation Method

3.8.2 Implementation

Example 3.15 Protocol SQOLP01 (1999, Section 7): Comparison of steroid with cyclosporine for the topical treatment of oral lichen planus. 7. Randomisation

Example 3.16 Protocol EXPEL (2016): Peritoneal lavage after curative gastrectomy. Enrolment and randomisation

Example 3.17 Protocol SQGL02 (1999): Brimonidine as a neuroprotective agent in acute angle‐closure glaucoma (AACG) Procedure for randomisation

3.9 Assessment and data collection. 3.9.1 Assessments

Example 3.18 Protocol SQCP01 (2006): Comparing speech and growth outcomes between two different techniques and two different timings of surgery in the management of clefts of the secondary palate. Method

Example 3.19 Protocol PRESSURE (2000): Pressure‐relieving support surfaces: a randomised evaluation

3.9.2 Data collection

3.10 Statistical considerations

3.10.1 Number of subjects

Example 3.20 Protocol SQGL02: Brimonidine as a neuroprotective agent in acute angle‐closure glaucoma (AACG) 9. STATISTICAL CONSIDERATIONS. Trial size

3.10.2 Analysis

Example 3.21 Protocol SQOLP01 (1999): Comparison of steroid with cyclosporine for the topical treatment of oral lichen planus. Analysis plan. Primary endpoints

Clinical response at 4 weeks

Pain score 4 weeks

Secondary analyses

Adverse events

Additional analysis

3.10.3 Interim analysis

Example 3.22 Protocol EXPEL (2016): Peritoneal lavage after curative gastrectomy

3.11 Ethical issues

3.11.1 General

Example 3.23 Protocol PRESSURE (2000): Pressure‐relieving support surfaces: a randomised evaluation

Example 3.24 Protocol SQGL02 (1999): Brimonidine as a neuroprotective agent in acute angle‐closure glaucoma

3.11.2 Informed consent

Example 3.25 Protocol SQGL02 (1999): Brimonidine as a neuroprotective agent in acute angle‐closure glaucoma

Example 3.26 eConsent – acute stroke

3.12 Organisational structure

3.13 Publication policy

Example 3.27 Protocol SQOLP01: Comparison of steroid with cyclosporine for the topical treatment of oral lichen planus. PUBLICATION POLICY

3.14 Trial forms

3.15 Appendices

3.16 Regulatory requirements

3.16.1 Protocol amendments

3.17 Guidelines

3.18 Protocols

CHAPTER 4 Measurement and Data Capture

4.1 Introduction

4.2 Types of measures. 4.2.1 Qualitative data. 4.2.1.1 Nominal or unordered categorical

4.2.1.2 Ordered categorical or ranked

4.2.2 Numerical or quantitative data

4.2.3 Time‐to‐event

4.2.4 Multiple sites per subject

4.2.5 Practice

4.3 Measures and endpoints

4.3.1 Assessments

4.3.2 Endpoints

4.3.2.1 Objective criteria

Example 4.1 Subjective skin assessment to identify bed sores

Example 4.2 VAS – pain assessment

4.3.2.2 Single measure – one data item

4.3.2.3 Single measure – several data items

Example 4.3 Time to develop a first (or new) pressure sore

4.3.2.4 Multiple measures

4.3.2.5 Repeated measures

Example 4.4 Multiple sclerosis

4.3.2.6 Multiple endpoints

4.3.2.7 Laboratory measures

Example 4.5 Laboratory assay – estrone levels

4.3.2.8 Surrogates

4.3.3 Patient self‐reported outcomes

4.3.4 Economic evaluation

4.4 Making the observations

4.4.1 Which observer

4.4.2 Precision

4.5 Baseline measures

4.6 Data recording. 4.6.1 Forms

4.6.1.1 Layout

Example 4.6 Form design – breast cancer

4.6.1.2 Closed questions

4.6.1.3 Open questions

4.6.1.4 Follow‐up or repeat forms

4.6.2 Questionnaires

4.6.2.1 Layout

Example 4.7 Question layout – sexual function after gynaecological cancer

4.6.2.2 Closed questions

Example 4.8 Closed question – sexual function after gynaecological cancer

Example 4.9 Likert scale – SF‐36

4.6.2.3 Open questions

4.6.2.4 Response bias

4.7 Technical notes

4.8 Guidelines

CHAPTER 5 Randomisation

5.1 Introduction

5.2 Rationale

5.3 Mechanics. 5.3.1 Simple randomisation. 5.3.1.1 Random numbers

5.3.1.2 Simple random allocation

Example 5.1 Simple randomisation – chronic gastro‐oesophageal reflux

5.3.2 Blocks

5.3.2.1 Randomised block designs (RBD)

5.3.2.2 Variable block size

5.3.2.3 Allocation ratio

Example 5.2 Unequal allocation – hepatocellular carcinoma

5.3.2.4 Stratified randomisation

Example 5.3 Stratified randomisation by recruiting centre – uncomplicated falciparum malaria

5.3.3 Dynamic allocation by minimisation

Example 5.4 Stratified randomisation – cranberry or apple juice for urinary symptoms

Example 5.5 Trastuzumab for HER2‐positive breast cancer

5.4 Application

5.5 Carrying out randomisation. 5.5.1 Design

5.5.2 Preparing the list

5.5.3 Double‐blind trials

Example 5.6 Prevention of pain and bruising following hand surgery

5.5.4 Breaking the code

5.5.5 Computer‐based systems

5.6 Documentation

Example 5.7 Root caries repair

5.7 Unacceptable methods

5.8 Guidelines

CHAPTER 6 Trial Initiation

6.1 Introduction

6.2 Trial organisation. 6.2.1 Trial steering committee

6.2.2 Identifying the tasks

6.2.3 Trial office

6.2.4 Protocol and form production

6.2.5 Obtaining approval

6.2.6 Trial registration

6.2.7 Establishing the network

6.2.8 Mechanisms – supplies. 6.2.8.1 The protocol

6.2.8.2 Supplies

6.2.8.3 Training

6.2.9 Registering and randomisation of patients

6.3 Data collection and processing. 6.3.1 Data forms and their scheduling

6.3.2 Missing forms and data

6.3.3 Database

6.3.4 Checking

6.4 Internal data monitoring

6.5 Ethical and regulatory requirements. 6.5.1 Routine reporting

6.5.2 Serious adverse events

6.6 Launching the trial

6.7 Trial registries

6.8 Guidelines

CHAPTER 7 Trial Conduct and Completion

7.1 Introduction

7.2 Regular feedback. 7.2.1 Recruitment

7.2.2 Missing forms

7.2.3 Validation

7.2.4 Basics

7.3 Publicity. 7.3.1 Newsletters

7.3.2 Clinical journals

7.4 Protocol modifications

7.5 Preparing the publication(s)

7.5.1 Preliminaries

7.5.2 Writing committee

7.5.3 Practicalities

7.5.4 New developments

7.5.5 Choice of journal(s)

7.6 The next trial?

7.7 Protocol

CHAPTER 8 Basics for Analysis

8.1 Introduction

8.2 The standard Normal distribution

8.3 Confidence intervals

Example 8.1 Difference in means – atopic eczema

8.4 Statistical tests. 8.4.1 Significance tests

8.4.2 Null hypothesis

8.5 Examples of analysis. 8.5.1 Means

Example 8.2 Confidence interval – eczema

Example 8.3 Student t‐test – eczema

8.5.2 Medians

Example 8.4 Difference in medians – eczema

8.5.3 Proportions

Example 8.5 Difference in proportions – oral lichen planus

Example 8.6 Difference in rates – recurrent malaria

Example 8.7p‐value – recurrent malaria

8.5.4 Number needed to treat (NNT)

Example 8.8 NNT – cleft lip and palate, and oral lichen planus

8.5.5 Ordered categorical

Example 8.9 Ordered categorical data – eczema

8.5.6 Time‐to‐event

Example 8.10 Comparing groups – advanced neuroblastoma

Example 8.11 Logrank test – advanced neuroblastoma

8.6 Regression methods

8.6.1 Comparing means

Example 8.12 Regression model – eczema

8.6.2 Proportions and the odds ratio

Example 8.13 Odds ratio – recurrent malaria

Example 8.14 Logistic regression – oral lichen planus

8.6.3 Ordered categorical

8.6.4 Time‐to‐event

Example 8.15 Cox model – advanced neuroblastoma

8.6.5 Adjusting for baseline

Example 8.16 Cox model with covariate – advanced neuroblastoma

8.6.6 Dummy variables

8.6.7 Time‐varying covariates

8.6.8 Adjusting for strata

Example 8.17 Stratified by stage – advanced neuroblastoma

8.7 Other issues. 8.7.1 Missing values

Example 8.18 Missing data – eczema

8.7.2 Graphical methods

8.7.3 Multiple endpoints

8.7.4 Interim analyses

8.8 Practice

8.9 Technical details. 8.9.1 Recommended method for comparing proportions

8.9.2 Confidence interval for an odds ratio

CHAPTER 9 Trial Size

9.1 Introduction

9.1.1 Caution

9.2 Significance level and power. 9.2.1 Significance level

9.2.2 The alternative hypothesis

9.2.3 Power

9.3 The fundamental equation

9.4 Specific situations. 9.4.1 Comparing means

Example 9.1 Difference in means – disease activity

9.4.2 Comparing proportions

Example 9.2 Complete response rate – multiple myeloma

Example 9.3 High‐risk prostate cancer

9.4.3 Ordered categorical data

Example 9.4 Moderate‐to‐severe eczema

9.4.4 Time‐to‐event

Example 9.5 Gastric cancer

9.5 Practical considerations. 9.5.1 Trial objectives

9.5.2 The anticipated effect size

Example 9.6 Anticipated effect size

9.5.3 Significance level and power

9.5.4 Allocation ratio

9.5.5 Limited resources

Example 9.7 Homeopathic arnica

9.5.6 Subject withdrawals

Example 9.8 Adjusting for withdrawals

9.6 Further topics

9.6.1 Several primary outcomes

Example 9.9 Two major endpoints – disease activity

9.6.2 Competing risks outcomes

Example 9.10 Competing risks – nasopharyngeal cancer

9.6.3 Revising trial size

Example 9.11 Internal pilot to modify trial size – gastric emptying time

9.6.4 1‐sided alternative hypotheses

9.7 Guideline

9.8 Software

CHAPTER 10 Data and Safety Monitoring

10.1 Introduction

10.2 The DSMB. 10.2.1 Remit and terms of reference

10.2.2 Logistics

10.2.3 Composition

10.2.4 Frequency of meetings

10.2.5 Stopping rules

10.3 Early reviews

Example 10.1 Protocol UKW3 (1992) – preoperative chemotherapy in Wilms' tumour

10.3.1 Safety

Example 10.2 Peritoneal lavage after curative gastrectomy

Example 10.3 Preterm infants

10.3.2 Trial size

Example 10.4 Review of trial size – nasopharyngeal cancer

10.3.3 Recruitment issues

Example 10.5 Cleft palate

10.4 Interim reviews. 10.4.1 Rationale

10.4.2 Efficacy

Example 10.6 Heroin dependence

10.4.2.1 Stopping for efficacy

Example 10.7 Children undergoing general anaesthesia

Example 10.8 Resectable hepatocellular carcinoma

10.4.3 Futility

Example 10.9 Children with severe infection

Example 10.10 Advanced cancer and cachexia

10.4.3.1 Stopping for futility

10.4.3.2 Conditional power test

Example 10.11 Acute ischaemic stroke

10.5 Protocols

CHAPTER 11 Reporting

11.1 Introduction. 11.1.1 Preliminaries

11.1.2 When to publish

11.2 Publication

11.2.1 Evidence‐based medicine

11.2.2 Plain language

11.3 Responsibilities. 11.3.1 Authorship

11.3.2 Registration

11.3.3 Funding sources

11.4 Background

11.5 Methods

11.5.1 Participants

11.5.2 Procedures

11.5.3 Assessments

11.5.4 Consent

11.5.5 Monitoring

11.5.6 Randomisation

11.5.7 Statistical considerations. 11.5.7.1 Justification of trial size

11.5.7.2 Interim analysis for data monitoring

11.5.7.3 Intended final analysis

11.6 Findings

11.6.1 CONSORT

11.6.2 Participant characteristics

11.6.3 Endpoints

11.6.4 Adverse events

11.6.5 Graphics

11.7 When things go wrong

11.8 Conclusions

11.9 Guidelines. 11.9.1 General

11.9.2 Editorial

11.9.3 CONSORT

11.9.4 Statistical standards

CHAPTER 12 More Than Two Interventions

12.1 Introduction

12.2 Unstructured comparisons. 12.2.1 Hypotheses

12.2.2 Analysis

Example 12.1 Postmenopausal women with early breast cancer

12.2.3 Selection design

Example 12.2 Selection design – advanced non–small cell lung cancer

12.2.4 Trial size

12.3 Comparisons with placebo (or standard) 12.3.1 Design

Example 12.3 Comparison with a standard – schizophrenia

12.3.2 Trial size

Example 12.4 Comparison with placebo – heroin dependence

12.3.3 Analysis

Example 12.5 Comparison with a placebo – intellectual disability

12.4 Dose–response designs. 12.4.1 Design

Example 12.6 Dose–response – rheumatoid arthritis

12.4.2 Trial size

Example 12.7 Rheumatoid arthritis

12.4.3 Analysis

Example 12.8 Dose–response – plaque psoriasis

12.4.4 Reporting

12.5 Factorial trials. 12.5.1 Design

Example 12.9 Low back pain

Example 12.10 23 factorial design – cleft lip and palate

12.5.2 Randomisation

Example 12.11 Cleft palate repair

12.5.3 Trial size

Example 12.12 Chronic obstructive pulmonary disease

12.5.4 Analysis. 12.5.4.1 Comparing means

Example 12.13 Chronic obstructive pulmonary disease

12.5.4.2 Modelling approach

12.5.5 Practical issues

Example 12.14 Malignant pleural mesothelioma

12.5.6 Reporting

Example 12.15 Unilateral cleft lip and palate

12.6 Complex structure comparisons. 12.6.1 Design

12.6.2 Trial size. Example 12.16 Newly diagnosed type 2 diabetes

12.6.3 Analysis

Example 12.17 Newly diagnosed type 2 diabetes

CHAPTER 13 Paired and Matched Designs

13.1 Matched‐pair trials. 13.1.1 Design

Example 13.1 Anaesthesia for deformed eyelid surgery

Example 13.2 Sputum samples from patients with cystic fibrosis

13.1.2 Analysis. 13.1.2.1 Difference in means

Example 13.3 Anaesthesia for deformed eyelid surgery

Example 13.4 Anaesthesia for deformed eyelid surgery

13.1.2.2 Difference in proportions

Example 13.5 Culture of P. aeruginosa in cystic fibrosis

13.1.3 Trial size. 13.1.3.1 Continuous outcome

Example 13.6 Anaesthesia for bilateral blepharoplasty of upper eyelids

13.1.3.2 Binary outcome

Example 13.7 Cystic fibrosis

13.2 Cross‐over trials. 13.2.1 Design

13.2.1.1 Two‐period – two‐treatment

13.2.1.2 Washout to reduce carry‐over

Example 13.8 Cross‐over trial – Anacetrapib and blood pressure

13.2.1.3 Run‐in

13.2.2 Difficulties

Example 13.9 Ambulatory blood pressure

13.2.3 Analysis

Example 13.10 Fuel metabolism during exercise

Example 13.11 Anaesthesia for bilateral blepharoplasty of upper eyelids

13.2.4 Trial Size

Example 13.12 Cross‐over trial size – ambulatory blood pressure

13.3 Split‐mouth designs. 13.3.1 Design

13.3.2 Difficulties

Example 13.13 Restoratives for dental caries

13.3.3 Analysis

Example 13.14 Split‐mouth design – caries prevention

13.3.4 Trial size. 13.3.4.1 Continuous outcome

Example 13.15 Split‐mouth design – restorative dental treatment

13.3.4.2 Binary outcome

Example 13.16 Split‐mouth design – Caries prevention

13.4 Guidelines

CHAPTER 14 Repeated Measures Design

14.1 Introduction

Example 14.1 Heart failure

Example 14.2 Moderate‐to‐severe eczema

Example 14.3 Adult patients with atopic eczema

14.2 Simplified analysis

14.2.1 Change from baseline. 14.2.1.1 One baseline – one post‐randomisation assessment

Example 14.4 Heart failure

14.2.1.2 Mean baseline – mean post‐randomisation assessments

14.2.1.3 Adjusting for baseline

Example 14.5 Heart failure

Example 14.6 Patients with phenylketonuria

14.3 Regression models

14.3.1 Fixed effects

14.3.2 Trends over time

14.3.3 Random effects

14.4 Auto‐correlation

14.4.1 Auto‐correlation coefficient

14.4.2 Patterns of auto‐correlation

14.4.2.1 Independent

14.4.2.2 Exchangeable

14.4.2.3 Autoregressive

14.4.2.4 Unstructured

Example 14.7 6MWT in patients with heart failure

14.5 Accounting for auto‐correlation

14.5.1 Linear profiles

Example 14.8 Heart failure – influence of time on 6MWT

Example 14.9 Heart failure – comparing Placebo with FCM

14.5.2 Non‐linear profiles

14.6 The design effect (DE)

14.6.1 Change from baseline

Example 14.10 Design effect – heart failure

14.6.2 Adjusting for baseline

Example 14.11 Design effect – phenylketonuria – atopic eczema

14.6.3 Post‐intervention trends

Example 14.12 Design effect – atopic eczema

14.6.4 Selected contrasts

Example 14.13 DE for a specific contrast

14.6.5 Comparing design effects

14.7 Trial size

14.7.1 Continuous outcomes

Example 14.14 Primary Sjögren's syndrome

14.7.2 Binary outcomes

Example 14.15 Sample size – primary Sjögren's syndrome

14.8 Practicalities. 14.8.1 Number of repeat assessments

14.8.2 Making the assessments

14.8.3 Choice of auto‐correlation structure

14.8.4 Strength of auto‐correlation

14.8.5 Withdrawals and missing values

14.8.6 Protocol description of intended analysis

14.9 Reporting

14.10 Matched organs receiving the same intervention. 14.10.1 Design

14.10.2 Single outcome per patient

14.10.3 Several (single‐time) outcomes per patient

CHAPTER 15 Non‐Inferiority and Equivalence Trials

15.1 Introduction

15.2 Non‐inferiority

15.2.1 Limit of non‐inferiority

15.2.2 Hypothesis

15.2.3 Establishing non‐inferiority

15.2.3.1 T less effective than S anticipated

15.2.3.2 T more adverse than S anticipated

Example 15.1 Paired design – methicillin‐resistant Staphylococcus aureus (MRSA)

15.3 Analysis

15.3.1 Continuous endpoint. 15.3.1.1 Independent groups

Example 15.2 Dosing of warfarin

15.3.1.2 Matched pairs

Example 15.3 Non‐inferiority cross‐over trial analgesia in preterm infants

15.3.2 Binary endpoint. 15.3.2.1 Independent groups

Example 15.4 Femoropopliteal periphery artery disease

15.3.2.2 Matched pairs

Example 15.5 Non‐inferiority cross‐over trial analgesia in preterm infants

15.4 Trial size. 15.4.1 Continuous endpoint. 15.4.1.1 Independent groups

Example 15.6 Clinical dosing of warfarin

15.4.1.2 Matched pairs

Example 15.7 Cross‐over trial – chronic non‐cancer pain

Example 15.8 Split‐mouth design – oral soft tissue augmentation

15.4.2 Binary endpoint. 15.4.2.1 Independent groups

Example 15.9 Rheumatoid arthritis

15.4.2.2 Matched pairs

Example 15.10 Analgesia in preterm infants

15.5 Equivalence

15.5.1 Hypotheses

15.5.2 Analysis

Example 15.11 Parallel‐group design – head louse infestation

15.5.3 Trial Size

Example 15.12 Cross‐over design – type 2 diabetes

15.6 Reporting

15.7 Practical Issues

15.8 Guidelines

CHAPTER 16 Cluster Designs

16.1 Design features

Example 16.1 Cluster design – enhanced diabetes care

16.2 Procedures. 16.2.1 Consent

Example 16.2 Facemask protection for health care workers

Example 16.3 Exercise for depression in elderly residents in care homes

16.2.2 Randomisation

Example 16.4 Number of clusters

16.3 Regression models

16.4 Intra‐class correlation

16.5 Trial size

16.5.1 Design effect (DE)

16.5.2 Continuous endpoint

Example 16.5 Trial size – systolic blood pressure levels

Example 16.6 Trial size – systolic blood pressure levels

16.5.3 Binary endpoint

Example 16.7 Comparing proportions – hypertension and hypercholesterolemia

Example 16.8 Facemask protection for health care workers

16.5.4 Varying cluster size

Example 16.9 Varying cluster size

16.6 Analysis

Example 16.10 Systolic blood pressure

16.7 Practicalities

16.8 Reporting

16.9 Further reading

CHAPTER 17 Stepped Wedge Designs

17.1 Introduction

17.2 Notation

Example 17.1 Trial design – ischaemic stroke

17.3 Basic structure

17.3.1 Full design

Example 17.2 Design matrix – ischaemic stroke

17.3.2 Incomplete and other designs

17.4 Randomisation

Example 17.3 Randomisation

17.5 Cross‐sectional design

17.5.1 Analysis

17.5.1.1 Before‐and‐after

Example 17.4 Simplified analysis – ischaemic stroke

17.5.1.2 Modelling approach

Example 17.5 Simple logistic regression – ischaemic stroke

Example 17.6 Accounting for cluster and time – ischaemic stroke

17.5.2 Design effect

17.5.3 Trial size

Example 17.7 Cross‐sectional – acute chest pain

17.6 Closed cohort design

Example 17.8 Closed cohort – free breakfast

Example 17.9 Closed cohort – nurse‐led medicines' monitoring

17.6.1 Analysis

17.6.2 Design effect

17.6.3 Trial size

Example 17.10 Closed cohort – provision of school breakfast

17.7 Practicalities

CHAPTER 18 Genomic Targets

18.1 Introduction

18.2 Predictive markers. 18.2.1 Definition

Example 18.1 Predictive classifier – epidermal growth factor receptor (EGFR)

Example 18.2 Potential biomarker – EGFR amplification and KRAS mutations

18.2.2 Implications for trial size

18.2.3 Role of strata

18.3 Enrichment design. 18.3.1 Design

18.3.2 Trial size

Example 18.3 Enrichment design – renal cell carcinoma

18.3.3 Analysis

18.4 Biomarker‐Stratified Designs. 18.4.1 Design

Example 18.4 Biomarker‐Stratified Design – acute myeloid leukaemia

18.4.2 Prognostic influence of the biomarker

18.4.3 Analysis

18.4.3.1 Anticipate T effective in B− and B+ patients

Example 18.5 Biomarker‐Stratified Design – breast cancer

18.4.3.2 Anticipate T effective in B− only if effective in B+

Example 18.6 Biomarker‐Stratified Design – renal cell carcinoma

18.4.4 Trial size

18.4.4.1 Anticipate T effective in B− and B+ patients

Example 18.7 Biomarker‐Stratified Design – survival time endpoint

18.4.4.2 Anticipate T effective in B− only if effective in B+

Example 18.8 Biomarker‐Stratified Design – survival time endpoint

18.4.5 Practical considerations

18.5 Adaptive threshold designs. 18.5.1 Design

Example 18.9 Adaptive threshold design – unconfirmed predictive classifier

18.5.2 Analysis

18.5.3 Trial size

Example 18.10 Adaptive threshold design – non‐small‐cell lung cancer

18.5.4 Practicalities

CHAPTER 19 Feasibility and Pilot Studies

19.1 Introduction

19.2 Feasibility studies

Example 19.1 Feasibility – patient informed consent

Example 19.2 Feasibility – refining the interventions

19.3 External‐pilot studies. 19.3.1 Aims

19.3.2 Single‐arm design

Example 19.3 Single‐group external‐pilot – varicose veins

19.3.3 Randomised design

Example 19.4 Determine the SD – major depressive disorder

19.3.4 Sample size. 19.3.4.1 General considerations

19.3.4.2 Flat rule‐of‐thumb

19.3.5 Stepped rule‐of‐thumb

Example 19.5 Music therapy in hospice care

19.3.6 Specific objectives. 19.3.6.1 Revising the effect size

19.3.6.2 Revising the SD

Example 19.6 Revising the SD – major depressive disorder

19.3.7 Impact on the main trial size

19.3.7.1 Upper confidence limit (UCL) inflation. Example 19.7 Revising the main trial size – music therapy in hospice care

19.3.7.2 Noncentral t‐distribution (NCT) inflation

Example 19.8 Non‐central t‐distribution – major depressive disorder

19.4 Considerations across external‐pilot and main trial

19.4.1 Optimising overall sample size

Example 19.9 External‐pilot and main trial

19.5 Internal‐pilot studies

19.5.1 Continuous outcomes

Example 19.10 Internal‐pilot – children with non‐anaemic iron deficiency

19.5.2 Binary and other outcomes

19.6 Other preliminary studies

Example 19.11 Treatment of tungiasis

19.7 Reporting

CHAPTER 20 Further Topics

20.1 Introduction

20.2 Adaptive approaches

20.2.1 Sequential designs

Example 20.1 Mattress types for operative procedures

Example 20.2 Pressure sore prevention trial

Example 20.3 Amytrophic lateral sclerosis

20.2.2 Other adaptive designs

Example 20.4 Acute myeloid leukaemia

Example 20.5 Prostate cancer

20.3 Large simple trials

Example 20.6 Chronic heart failure

20.4 Bayesian methods

20.4.1 Mechanics

Example 20.7 Prior, likelihood and posterior distributions

20.4.2 Constructing the priors

Example 20.8 Nasopharyngeal cancer

Example 20.9 Hepatocellular carcinoma

20.5 Interim analyses. 20.5.1 Alpha‐spending function

20.5.2 Updated prior

20.5.3 Predictive probability and predictive power tests

Example 20.10 Gastric cancer

20.5.3.1 Final analysis

20.5.3.2 Very small trials

20.5.3.3 Comment

20.6 Zelen randomised consent designs

Example 20.11 Vaginal cuff infections following hysterectomy

Example 20.12 Patients in acute psychiatric crisis

20.7 Systematic overviews

20.7.1 The protocol

20.7.1.1 Literature search

20.7.1.2 Assessing quality

20.7.2 Combining trial results

20.7.3 Forest plot

Example 20.13 Ovarian cancer

20.7.4 Heterogeneity

Example 20.14 Corneal astigmatism

Statistical Tables

Glossary

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Second Edition

David Machin

.....

The authors conclude:

Overall survival was better in Group C compared with Group A (14.9 months v 11.2 months, P = 0.002), but there was no statistical differences found between Groups A and B or between Groups B and C.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Randomised Clinical Trials
Подняться наверх