Читать книгу Electromagnetic Simulation Using the FDTD Method with Python - Dennis M. Sullivan - Страница 2

Оглавление

Table of Contents

COVER

ABOUT THE AUTHORS

PREFACE

GUIDE TO THE BOOK FORMAT SPECIFIC CHOICES DEALING WITH SOME TOPICS Z TRANSFORMS PROGRAMMING EXERCISES PROGRAMMING LANGUAGE PYTHON VERSION

1 ONE‐DIMENSIONAL SIMULATION WITH THE FDTD METHOD 1.1 ONE‐DIMENSIONAL FREE‐SPACE SIMULATION PROBLEM SET 1.1 1.2 STABILITY AND THE FDTD METHOD PROBLEM SET 1.2 1.3 THE ABSORBING BOUNDARY CONDITION IN ONE DIMENSION PROBLEM SET 1.3 1.4 PROPAGATION IN A DIELECTRIC MEDIUM PROBLEM SET 1.4 1.5 SIMULATING DIFFERENT SOURCES PROBLEM SET 1.5 1.6 DETERMINING CELL SIZE PROBLEM SET 1.6 1.7 PROPAGATION IN A LOSSY DIELECTRIC MEDIUM PROBLEM SET 1.7 1.A APPENDIX REFERENCES PYTHON PROGRAMS USED TO GENERATE FIGURES IN THIS CHAPTER

2 MORE ON ONE‐DIMENSIONAL SIMULATION 2.1 REFORMULATION USING THE FLUX DENSITY PROBLEM SET 2.1 2.2 CALCULATING THE FREQUENCY DOMAIN OUTPUT PROBLEM SET 2.2 2.3 FREQUENCY‐DEPENDENT MEDIA PROBLEM SET 2.3 2.4 FORMULATION USING Z TRANSFORMS PROBLEM SET 2.4 2.5 FORMULATING A LORENTZ MEDIUM PROBLEM SET 2.5 REFERENCES PYTHON PROGRAMS USED TO GENERATE FIGURES IN THIS CHAPTER

3 TWO‐DIMENSIONAL SIMULATION 3.1 FDTD IN TWO DIMENSIONS PROBLEM SET 3.1 3.2 THE PERFECTLY MATCHED LAYER (PML) PROBLEM SET 3.2 3.3 TOTAL/SCATTERED FIELD FORMULATION REFERENCES

4 THREE‐DIMENSIONAL SIMULATION 4.1 FREE‐SPACE SIMULATION PROBLEM SET 4.1 4.2 THE PML IN THREE DIMENSIONS PROBLEM SET 4.2 4.3 TOTAL/SCATTERED FIELD FORMULATION IN THREE DIMENSIONS PROBLEM SET 4.3 REFERENCES

5 ADVANCED PYTHON FEATURES 5.1 CLASSES PROBLEM SET 5.1 5.2 PROGRAM STRUCTURE PROBLEM SET 5.2.1 PROBLEM SET 5.2.2 5.3 INTERACTIVE WIDGETS PROBLEM SET 5.3

10  6 DEEP REGIONAL HYPERTHERMIA TREATMENT PLANNING 6.1 INTRODUCTION 6.2 FDTD SIMULATION OF THE SIGMA 60 6.3 SIMULATION PROCEDURE 6.4 DISCUSSION REFERENCES

11  APPENDIX A: THE Z TRANSFORMTHE Z TRANSFORM A.1 THE SAMPLED TIME DOMAIN AND THE Z TRANSFORM A.2 EXAMPLES A.3 APPROXIMATIONS IN GOING FROM THE FOURIER TO THE Z DOMAIN PROBLEM SET A REFERENCES

12  APPENDIX B: ANALYTIC SOLUTION TO CALCULATING THE ELECTRIC FIELDANALYTIC SOLUTION TO CALCULATING THE ELECTRIC FIELD REFERENCE

13  INDEX

14  END USER LICENSE AGREEMENT

List of Tables

1 Chapter 2Table 2.1 Properties of Human Muscle

2 Chapter 5Table 5.1 Breakdown of PML Parameters

3 Appendix ATable A.1 Some Z TransformsTable A.2 Properties of Z Transforms

List of Illustrations

1 Chapter 1Figure 1.1 Interleaving of the E and H fields in space and time in the FDTD ...Figure 1.2 FDTD simulation of a pulse in free space after 100 time steps. Th...Figure 1.3 Simulation of an FDTD program with absorbing boundary conditions....Figure 1.4 Simulation of a pulse striking dielectric material with a dielect...Figure 1.5 Simulation of a propagating sinusoidal wave of 700 MHz striking a...Figure 1.6 Simulation of a propagating sinusoidal wave striking a lossy diel...

2 Chapter 2Figure 2.1 Simulation of a pulse striking a dielectric medium with εr =...Figure 2.2 (a) Relative dielectric constant and (b) conductivity as function...Figure 2.3 Simulation of a pulse striking a frequency‐dependent dielectric m...Figure 2.4 Simulation of a wave propagating in free space and striking a pla...Figure 2.5 Simulation of a wave propagating in free space and striking a pla...Figure 2.6 (a) Relative dielectric constant and (b) conductivity as function...

3 Chapter 3Figure 3.1 Interleaving of the E and H fields for the two‐dimensional TM for...Figure 3.2 Results of a simulation using the program fd2d_3_1.py. A Gaussian...Figure 3.3 Parameters related to the perfectly matched layer (PML).Figure 3.4 Results of a simulation using the program fd2d_3_2.py. A sinusoid...Figure 3.5 Total field/scattered field of the two‐dimensional problem space....Figure 3.6 Every point is in either the total field or the scattered field....Figure 3.7 Simulation of a plane wave pulse propagating in free space. The i...Figure 3.8 Simulation of a plane wave striking a dielectric cylinder. The fi...Figure 3.9 Simulation of a plane wave impinging on a dielectric cylinder. Th...Figure 3.10 Comparison of the FDTD results (solid lines) with the Bessel fun...

4 Chapter 4Figure 4.1 The Yee cell.Figure 4.2 A dipole antenna. The FDTD program specifies the metal arms of th...Figure 4.3 Ez field radiation from a dipole antenna in a three‐dimensional F...Figure 4.4 Radiation from a dipole antenna in an FDTD program with a seven‐poi...Figure 4.5 Total/scattered field in three dimensions.Figure 4.6 Total/scattered field boundary at k = ka.Figure 4.7 Comparison of the FDTD calculation (lines) with the Bessel functi...Figure 4.8 Ez is calculated by the surrounding Hx and Hy values. The paramet...Figure 4.9 Comparison of the FDTD calculation (lines) with the Bessel functi...

5 Chapter 5Figure 5.1 Main program flow for fd3d_5_1.py.Figure 5.2 Window created using the Controller class. This displays the outp...

6 Chapter 6Figure 6.1 A diagram indicating the Sigma 60 applicator placed around the pa...Figure 6.2 Axial view of the Sigma 60 annular phased array.Figure 6.3 An illustration of the FDTD problem space containing the Sigma 60...Figure 6.4 FDTD model of the dipole antennas.Figure 6.5 The Hx field in front of the dipole is an indication of current f...Figure 6.6 The amplitude of the Fourier transform of Hx in front of the dipo...Figure 6.7 Illustration of the radiation from quadrant 1 for 300, 500, 600, ...Figure 6.8 Test configuration to evaluate the frequency response of the dipo...Figure 6.9 Output of the test illustrated in Fig. 6.5.Figure 6.10 Contour diagrams of the GAZ parameter illustrating how the patie...Figure 6.11 Flow chart of the treatment planning system.Figure 6.12 The operator specifies a target point (ipos,jpos) and the phases...Figure 6.13 The resulting SAR distributions for four different settings. The...

7 Appendix AFigure A.1 The response of Eq. (A.18) to a step function input, that is, x[n

Guide

Cover

2 Table of Contents

Begin Reading

Pages

ii

iii

iv

v

ix

xi

xii

xiii

xiv

10 xv

11  xvi

12  1

13  2

14  3

15  4

16  5

17 6

18  7

19  8

20 9

21  10

22  11

23  12

24  13

25 14

26  15

27  16

28  17

29  18

30  19

31  20

32  21

33  22

34  23

35  24

36  25

37  26

38  27

39  28

40  29

41  30

42 31

43  32

44  33

45  34

46  35

47  36

48  37

49  38

50  39

51  40

52  41

53  42

54  43

55  44

56  45

57  46

58 47

59  48

60  49

61  50

62  51

63  52

64  53

65  54

66  55

67  56

68  57

69  59

70  60

71  61

72  62

73  63

74  64

75  65

76  66

77  67

78  68

79  69

80  70

81  71

82  72

83  73

84 74

85  75

86  76

87  77

88 78

89 79

90  80

91  81

92  82

93  83

94  84

95  85

96  86

97  87

98  88

99  89

100  90

101  91

102  92

103  93

104  94

105  95

106  96

107  97

108  99

109  100

110  101

111  102

112  103

113  104

114  105

115  106

116  107

117  108

118  109

119  110

120  111

121  112

122  113

123  114

124  115

125  116

126  117

127  118

128  119

129  120

130  121

131  122

132  123

133  124

134  125

135  126

136  127

137  129

138  130

139  131

140  132

141  133

142  134

143  135

144  136

145  137

146  138

147  139

148  140

149  141

150  142

151  143

152  144

153  145

154  146

155  147

156  148

157  149

158  150

159  151

160  152

161  153

162  154

163  155

164  156

165  157

166  158

167  159

168  160

169  161

170  162

171  163

172  164

173  165

174  166

175  167

176  168

177  169

178  170

179  171

180  172

181  173

182  174

183  175

184  176

185  177

186  178

187  179

188  180

189 181

190  183

191  184

192  185

193  186

194  187

195  188

196  189

197  190

198  191

199  192

200  193

201  194

202  195

203 196

204 197

205 198

206  199

Electromagnetic Simulation Using the FDTD Method with Python

Подняться наверх