Читать книгу Анатомия хатха-йоги - Дэвид Коултер - Страница 7
Глава первая. Движение и поза
Нервная система
ОглавлениеМы ощущаем все происходящее в материальном мире посредством специализированных клеток, называемых нейронами, сто миллиардов которых находятся в одном только головном мозге; эти клетки направляют потоки информации по всему телу и внутри центральной нервной системы (головного и спинного мозга). Вся передача информации осуществляется всего лишь тремя типами клеток: чувствительными нейронами, которые переносят поток ощущений от периферической нервной системы (по определению, это все части нервной системы, находящиеся вне головного и спинного мозга) в центральную нервную систему и в сознание; двигательными нейронами, которые передают из головного и спинного мозга инструкции, предназначенные для периферической нервной системы; и вставочными, или ассоциативными нейронами, которые находятся между чувствительными и двигательными нейронами, – эти нейроны передают сигналы нашей воли и желаний двигательным нейронам. Сенсорная (чувствительная) информация поступает в задние рога спинного мозга через задние корешки, а двигательная информация выносится из передних рогов спинного мозга в передние корешки. Задние и передние корешки сливаются, образуя смешанные (двигательные и чувствительные) спинномозговые нервы, которые, в свою очередь, иннервируют все структуры организма (рис. 1.3–1.9).
Рис. 1.3. Микроскопический срез заднего спинномозгового ганглия (вверху) и трехмерное изображение первого поясничного сегмента (L1) спинного мозга, на котором показаны парные передние и задние корешки и смешанные (двигательные и чувствительные) спинномозговые нервы (Quain)
Вернемся, однако, к предмету нашего рассмотрения; ясно, что нейроны передают наши осознанные намерения мышцам, но нам надо создать рабочее определение для понятий желания и воли. В этой книге я буду трактовать желание как процесс принятия решения, связанный с сознанием, а волю буду определять как реальную инициацию команд мозговой коры и других участков центральной нервной системы, которые отвечают за руководство нашими действиями. Таким образом, желание – это черный ящик, содержание которого в большой степени неизвестно и в лучшем случае лишь частично доступно экспериментатору. Напротив, природу и содержание воли можно исследовать надежными неврологическими методами.
Нейроны
Нейрон – основная структурная и функциональная единица нервной системы. Несмотря на то что в нервной системе присутствуют клетки и других типов, а именно нейроглия или «глиальные нервные клетки», которые числом превосходят нейроны в десять раз, эти поддерживающие клетки не отвечают, в отличие от нейронов, за передачу информации между отделами нервной системы. Таким образом, объектом нашего интереса будет именно нейрон. Нейрон содержит несколько компонентов: тело клетки с ядром, которое отвечает за рост и развитие клетки, и клеточные отростки, часть из которых достигают значительной длины; именно эти отростки принимают и передают информацию. Отростки нейрона бывают двух типов: дендриты и аксоны. Представьте себе пойманного на крючок осьминога; его восемь щупальцев – это дендриты, а леска, на которой он висит – это аксон. Типичный двигательный нейрон содержит множество дендритов, ответвляющихся от тела клетки. Единственный аксон – леска – может простираться от тела клетки на расстояния от долей сантиметра до 1,2 метра в случае, когда двигательный нейрон находится в спинном мозге, а конец аксона располагается в мышце стопы; длина аксона может достигать 4,5 метра, например, у жирафа. Аксон может иметь ответвления, отходящие от его главного ствола (коллатерали аксона), а все ветви, включая и главный ствол, активно ветвятся по мере приближения к мышце-эффектору.
Специализация дендритов – получение информации от окружающей среды или от других нейронов, а аксон передает информацию в виде нервных импульсов в другие части тела или другим нейронам. Дендриты чувствительных нейронов располагаются в коже, суставах, мышцах и внутренних органах; их клеточные тела находятся в задних корешковых ганглиях, которые располагаются вдоль позвоночного столба, а их аксоны несут сенсорную (чувствительную) информацию в спинной мозг (рис. 1.3–1.9). Дендриты двигательных нейронов расположены в центральной нервной системе, а их аксоны расходятся оттуда (в составе периферических нервов) к иннервируемым мышечным клеткам и железам по всему телу. Между чувствительными и двигательными нейронами расположены так называемые вставочные нейроны, дендриты которых получают информацию от чувствительных нейронов, а аксоны контактируют с другими вставочными нейронами или двигательными нейронами, которые иннервируют мышцы (рис. 1.4). Вставочные нейроны составляют большую часть расположенных в головном и спинном мозге нейронов, включая вторичные и третичные связующие нейроны, которые передают чувствительные сигналы в большой мозг; проекционные нейроны передают двигательные сигналы из большого мозга и мозжечка к промежуточным нейронам, которые контактируют с двигательными нейронами спинного мозга и комиссуральными нейронами, связывающими правое и левое полушарие головного мозга.
Вставочные нейроны согласуют работу всей этой сложной системы. Вы ощущаете стимул и действием реагируете на него, и эту реакцию обеспечивают вставочные нейроны. То есть между ощущением и действием есть дополнительное вставочное звено.
Для того чтобы управлять функциями всего организма, нейроны образуют сети, в которых контактируют друг с другом в точках, называемых синапсами. Синаптические окончания аксонов в этих точках соприкосновения выделяют химические трансмиттерные вещества, которые оказывают действие на дендриты следующего нейрона в цепи (см. рис. 1.4). Первый нейрон называют пресинаптическим, а следующий нейрон – постсинаптическим. Окончание пресинаптического аксона передает информацию постсинаптическому дендриту, но ни в коем случае не наоборот.
В синапсах выделяются медиаторы двух типов: одни медиаторы облегчают активность постсинаптического нейрона; другие подавляют (ингибируют) ее. Тысячи аксонных окончаний могут образовывать синапсы на дендритах одного-единственного постсинаптического нейрона, и уровень активности последнего зависит от общего пресинаптического входа. Чем больше облегчающих медиаторов высвобождается в синапсах постсинаптического нейрона, тем выше будет его активность, что проявляется в повышении частоты нервных импульсов, которые будут переданы по его аксону; чем больше будет выделено в синапсе постсинаптического нейрона тормозных медиаторов, тем меньше будет активность этого нейрона. Например, пресинаптический вход ассоциативных нейронов, образующих синапсы с двигательными нейронами, либо облегчает активность двигательных нейронов, заставляя их посылать по аксону больше нервных импульсов в одну секунду, либо тормозит их активность, и тогда частота нервных импульсов уменьшается. Поза павлина (см. рис. 3.23 г) требует максимального облегчения и наименьшего торможения двигательных нейронов, иннервирующих мышцы живота, глубокие мышцы спины, мышцы, фиксирующие лопатку, и сгибатели предплечья. С другой стороны, мышечная релаксация в позе покойника (см. рис. 1.14) требует снижения интенсивности облегчения и возможного усиления торможения двигательных нейронов в центральной нервной системе (см. рис. 10.1, на котором представлены обобщенные представления о механизмах мышечного расслабления).
Рис. 1.4. Поперечный срез спинного мозга на уровне пятого поясничного сегмента (L5) с сенсорными входами от суставного рецептора, типичным вставочным нейроном и двигательным выходом в клетку скелетной мышцы. Маленькими стрелками указано направление хода нервных импульсов, а также отношение между пре- и постсинаптическими нейронами. Длинные толстые стрелки указывают местонахождение типичного вставочного нейрона в заднем роге спинного мозга и двигательного нейрона в переднем роге спинного мозга
Волевой акт: пути осуществления произвольных движений
Волевые, произвольные движения реализуются за счет сетей нейронов, дендриты и клеточные тела которых находятся в головном мозге; аксоны этих клеток оканчиваются на двигательных нейронах. Нейроны, расположенные в мозговой коре и направляющие аксоны к двигательным нейронам спинного мозга, носят название «верхние двигательные нейроны», так как они играют главную роль в осуществлении произвольной волевой деятельности. Эти клетки надо отличать от основной массы двигательных нейронов, нижних двигательных нейронов, клеточные тела которых находятся в спинном мозге. Собирательно нижние двигательные нейроны (мотонейроны) называют конечным общим путем, потому что именно их аксоны иннервируют скелетные мышцы. В обиходе под словами «двигательные нейроны» обычно подразумевают именно нижние двигательные нейроны (рис. 1.5).
Паралич нижних двигательных нейронов: вялый паралич
Наилучший способ понять, как работают проводящие двигательные пути нервной системы, – это исследование неврологических синдромов, возникающих вследствие заболеваний или травм, оказывающих влияние на некоторые аспекты двигательной функции организма. Начнем мы с одного из самых известных заболеваний – полиомиелита, разрушающего нижние двигательные нейроны. Каждый, кто рос в сороковые и в начале пятидесятых годов, помнит эту страшную болезнь. В 1954 году появилась вакцина Солка, и с полиомиелитом было покончено.
Полиомиелит страшен тем, что разрушает нижние двигательные нейроны и лишает мышцы нервных импульсов, исходящих из спинного мозга, что приводит к параличу соответствующих мышц. Воля к произвольным движениям, возникающая в коре головного мозга, отрезана от путей исполнения этой воли, находящихся в спинном мозге, потому что оказывается разрушенным конечный общий путь. В самых тяжелых случаях мышцы становятся совершенно вялыми и расслабленными, и именно поэтому такой вид расстройства называют вялым параличом. То же самое, но в меньшем масштабе, случается, когда повреждается периферический нерв. Разрушение нижних двигательных нейронов или их аксонов в любом месте спинного мозга или повреждение периферических нервов вызывает паралич всех иннервируемых ими мышц. Становятся невозможными произвольные целенаправленные движения.
Рис. 1.5. Верхний и нижний двигательные нейроны. Клеточное тело верхнего двигательного нейрона показано в верхней части рисунка, в коре левого полушария головного мозга, а мишень этого нейрона – клеточное тело двигательного нейрона, аксон которого иннервирует правую четырехглавую мышцу бедра, – находится на правой стороне спинного мозга
Паралич верхних двигательных нейронов: спастический паралич
Когда повреждаются или разрушаются верхние двигательные нейроны, например, при черепно-мозговых травмах или инсультах, развивается поражение двигательной области коры головного мозга, и больные утрачивают произвольный контроль над движениями, осуществляемыми нижними двигательными нейронами. После такого поражения человек лишается способности к произвольным движениям. Окончательным результатом служит развитие не вялого, а спастического паралича, при котором мышцы становятся ригидными и совершают неконтролируемые судорожные движения. Некоторое подобие двигательной функции сохраняется, потому что другие части нервной системы, не затронутые поражением, тоже посылают аксоны к нижним двигательным нейронам и, таким образом, влияют на двигательную функцию. Проблема, однако, заключается в том, что эти входы не контролируются головным мозгом, и деятельность нижних нейронов растормаживается до такой степени, что скелетные мышцы, соответствующие пораженным участкам, могут находиться в состоянии спастического сокращения. Хотя в большинстве случаев ситуация не бывает столь тяжелой и не приводит к тотальной инвалидности, тяжелый спастический паралич лишь немногим лучше вялого паралича. Правда, в первом случае может сохраняться способность к некоторым активным целенаправленным движениям, но движения эти плохо координированы, особенно если они касаются дистальных мышц конечностей (рис. 1.6).
Поражения спинного мозга
Если спинной мозг сильно поврежден на каком-то определенном уровне, то возникают расстройства двух основных типов. Во-первых, сенсорная информация, которая поступает в спинной мозг ниже уровня поражения, не может дойти до коры головного мозга, а следовательно, не ощущается на сознательном уровне. Пациент не чувствует прикосновений, давления и боли, также отсутствует температурная чувствительность в зоне поражения. Во-вторых, двигательные команды коры головного мозга не достигают нижних двигательных нейронов, расположенных ниже области поражения спинного мозга. Эта ситуация становится очевидной при сравнении поражений спинного мозга на разных уровнях: разрушение спинного уровня на уровне грудного сегмента приводит к параплегии – параличу и потере чувствительности в нижних конечностях; нарушение непрерывности спинного мозга на уровне нижней части шейного сегмента приводит к тетраплегии – параличу и потере чувствительности в областях ниже шеи, включая и все четыре конечности (см. рис. 2.12).
Рис. 1.6. Гипотетическая схема, иллюстрирующая, как повреждение небольшого участка головного мозга может нарушить пути, важные для точного контроля активности скелетной мускулатуры, и вызывать спастический паралич. Пунктирными линиями обозначены пораженные системы, а сплошной линией – остальные системы, которые сами утратили способность влиять на точность мышечной активности