Читать книгу Большая история - Дэвид Кристиан - Страница 8

Часть I
Космос
1
В начале: первый порог
Первый порог. Квантовая петелька на ботинках Вселенной

Оглавление

Петелькой-зацепкой в самой широко принятой сегодня концепции начала начал служит идея Большого взрыва. Это одна из основных парадигм современной науки, таких как естественный отбор в биологии или тектоника плит в геологии[24].

Ключевая часть истории о Большом взрыве появилась лишь в начале 60-х годов XX века. Тогда астрономы впервые зафиксировали космическое микроволновое фоновое (реликтовое) излучение – энергию, которая осталась от Большого взрыва и сегодня повсеместно присутствует во Вселенной. Космологам все еще не удалось установить, когда Вселенная появилась, но они могут рассказать развеселую историю, которая начинается (глубокий вдох, и надеюсь, что нигде не ошибся) через одну миллиардную миллиардной миллиардной миллиардной миллиардной секунды после ее возникновения (примерно в 10–43 секунду с нулевого момента времени).

В самом простом виде история эта звучит так: вначале наша Вселенная была меньше атома. Что это за размер? Мышление нашего вида развивалось так, чтобы оперировать единицами человеческого масштаба, поэтому нам сложно со столь малыми сущностями, но, может быть, будет проще, если я скажу, что миллион атомов можно втиснуть в точку в конце этого предложения[25]. В момент, когда произошел Большой взрыв, вся Вселенная была меньше атома. В ней содержалась вся энергия и материя, которые есть в ней сегодня. Абсолютно вся. Эта мысль пугает и поначалу может показаться совершенно сумасшедшей. Но все данные, которые у нас есть сейчас, говорят о том, что около 13,82 млрд лет назад этот странный, крошечный и невероятно горячий объект действительно существовал.

Пока что мы не понимаем, как и почему он возник. Но квантовая физика говорит, а ускорители частиц (где субатомные частицы разгоняются до больших скоростей с помощью электрических и электромагнитных полей) демонстрируют, что в вакууме нечто действительно может возникнуть из ничего, хотя, чтобы это осмыслить, требуется весьма изощренное представление о том, что такое ничто. В современной квантовой физике невозможно точно определить, где находятся и как движутся субатомные частицы. Это означает: никогда нельзя быть уверенным, что определенная область пространства пуста; и в этой пустоте есть напряжение, которое обеспечивает возможность появления чего-то. Подобно отсутствию «не-сущего и сущего» в индийских Ведах, это напряжение, по-видимому, и вытащило из небытия нашу Вселенную[26].

Сегодня первый момент существования Вселенной называют Большим взрывом, будто она закричала при рождении, как младенец. Термин появился в 1949 году с легкой руки английского астронома Фреда Хойла, которому вся идея казалась смешной. В начале 30-х годов XX века, когда были заложены зачатки этой концепции, бельгийский астроном (и католический священник) Жорж Леметр называл новорожденную Вселенную «космическим яйцом» или «первозданным атомом». Тем немногим ученым, которые восприняли идею всерьез, было ясно, что при таком количестве втиснутой в него энергии первозданный атом должен быть невероятно горячим и расширяться с сумасшедшей скоростью, чтобы сбросить давление. Это расширение все еще продолжается, как если бы на протяжении более 13 млрд лет разворачивалась гигантская пружина.

В первые секунды и минуты после Большого взрыва произошло множество событий. Самое главное то, что возникли первые интересные структуры и закономерности, первые сущности или энергии с отчетливыми неслучайными формами и свойствами. Появление чего-то с новыми определенными качествами – это всегда волшебство. В современной истории происхождения мира мы будем наблюдать это снова и снова, хотя то, что вначале представляется магией, впоследствии может оказаться менее чудесным, когда станет понятно, что новые вещи и их новые качества не появились из ниоткуда или из ничего. Новые сущности с новыми свойствами возникают из уже имеющихся вещей и сил, выстроенных в другом порядке. Именно другая организация порождает новые качества, так же как, переставляя кусочки мозаики, можно получить новый узор. Возьмем пример из химии. Обычно мы думаем о водороде и кислороде как о бесцветных газах. Но если в определенной конфигурации соединить один атом кислорода с двумя атомами водорода, получится молекула воды. Если собрать много таких молекул, вы получите совершенно новое качество, которое мы называем жидкостью. Когда мы видим новую форму или структуру с новыми качествами, на самом деле это новая организация чего-то уже существующего. Инновация – это процесс возникновения нового. Если считать его персонажем нашей истории, вероятно, он будет изящным, загадочным и непредсказуемым, будет склонен к тому, чтобы внезапно появляться из темноты и уводить сюжет в новом неожиданном направлении.

Первые структуры и закономерности во Вселенной возникали именно так, когда рожденные в Большом взрыве объекты и силы выстраивались в новом порядке.

В первые мгновения, о которых у нас есть какие-либо данные, через долю секунды после Большого взрыва, Вселенная состояла из чистой, неупорядоченной, недифференцированной, бесформенной энергии. Энергию можно понимать как потенциал события, способность что-то делать или изменять. Внутри первородного атома она была нестабильной, температуры достигали многих триллионов градусов выше абсолютного нуля. Был краткий период чрезвычайно стремительного расширения, которое называют инфляцией. Вселенная расширялась так быстро, что, возможно, существенная ее часть улетела далеко за пределы той видимости, которой мы вообще когда-либо сможем достичь. Иными словами, вероятно, сегодня у нас в поле зрения лишь крошечный ее кусочек.

Еще через долю секунды расширение замедлилось. Бурная энергия Большого взрыва успокоилась, и по мере того, как Вселенная продолжала расширяться, энергии рассредоточивались и рассеивались. Средняя температура упала и продолжает падать, так что сегодня в большей части Вселенной она всего на 2,76 °С выше абсолютного нуля (абсолютный ноль – это температура, при которой ничто даже не дрогнет). Как и другие организмы на планете Земля, мы не чувствуем холода, потому что нас, подобно костру, согревает Солнце.

При экстремальных температурах Большого взрыва могло произойти почти все что угодно. Но со снижением температур сузились и возможности. Отдельные сущности подобно призракам возникали в хаотичном тумане остывающей Вселенной – в бурном котле самогó Большого взрыва они существовать не могли. Ученые называют такие изменения формы и структуры фазовым переходом. В повседневной жизни мы наблюдаем его, когда пар теряет энергию и превращается в воду (ее молекулы гораздо менее подвижны, чем молекулы пара) и когда вода превращается в лед (энергия которого столь мала, что его молекулы просто колеблются на месте). Вода и лед могут существовать лишь в узком диапазоне очень низких температур.

За миллиардную миллиардной миллиардной миллиардной секунды после Большого взрыва энергия и сама прошла фазовый переход. Она разделилась на четыре очень разных типа. Сегодня мы называем их проявления гравитацией, электромагнитным взаимодействием, а также сильным и слабым ядерным взаимодействием. Нам нужно познакомиться с особенностями характера каждого из них, потому что они сформировали Вселенную. Гравитация слабая, но ее действие простирается на большие расстояния, она всегда притягивает все друг к другу, и при этом ее сила накапливается. Она стремится сделать Вселенную более комковатой. Электромагнитная энергия встречается в отрицательной и положительной форме, так что она часто нейтрализует саму себя. Гравитация, несмотря на свою слабость, формирует Вселенную на уровне больших вещей. Электромагнетизм же преобладает на химическом и биологическом уровне – это то, что не дает распасться нашим телам. Третья и четвертая фундаментальные силы имеют скучные названия – сильное и слабое ядерное взаимодействие. Они работают на очень малых расстояниях и имеют значение на субатомном уровне. Человек не ощущает их непосредственно, но они во всех отношениях формируют наш мир, потому что определяют то, что происходит в недрах атома.

Возможно, существуют и другие виды энергии. В 90-е годы XX века новые измерения показали, что скорость расширения Вселенной увеличивается. Основываясь на идее, которую первым высказал Эйнштейн, многие физики и астрономы теперь доказывают, что может существовать некая форма антигравитации, пронизывающая весь космос, и мощь ее растет с расширением Вселенной. Сегодня доля этой энергии во Вселенной может составлять до 70 %. Но даже если ее сила начинает преобладать, мы еще не понимаем, что она такое и как она действует, так что физики называют ее темной энергией. Термин временный. Следите за новостями, потому что выяснить, что такое темная энергия, – это одна из главных задач современной науки.

В течение первой секунды после Большого взрыва возникла материя. Материя – это то, что энергия перемещает в пространстве. Еще сто лет назад ученые и философы считали, что это две отдельные сущности. Теперь мы знаем, что на самом деле материя – это энергия в очень сжатой форме. Молодой Альберт Эйнштейн показал это в своей знаменитой статье 1905 года. Формула, согласно которой энергия (E) равна массе (m), умноженной на квадрат скорости света (c), или E = mc 2, показывает, сколько энергии заключено в определенном количестве материи. Чтобы понять это, нужно умножить массу последней не просто на скорость света (а она больше миллиарда километров в час), а на скорость света, умноженную на себя. Получится колоссальное число, так что, разделив крошечную частичку материи, можно высвободить огромное количество энергии. Так происходит при взрыве водородной бомбы. В начале существования Вселенной протекал обратный процесс. Гигантские количества энергии сжимались в крошечные частички материи, подобные пылинкам в бескрайнем энергетическом тумане. Примечательно, что человек научился на короткое время воссоздавать энергии такого масштаба – в Большом адронном коллайдере недалеко от Женевы. И да, из этого кипящего океана энергии действительно начинают выскакивать частицы.

Все еще шла первая секунда…

24

Классический текст о парадигмах: Thomas Kuhn. The Structure of Scientific Revolutions, 2nd ed. Chicago: University of Chicago Press, 1970.

25

Peter Atkins. Chemistry: A Very Short Introduction. Oxford: Oxford University Press, 2015, loc. 722, Kindle.

26

Lawrence Krauss. A Universe from Nothing: Why There Is Something Rather than Nothing. New York: Simon and Schuster, 2012.

Большая история

Подняться наверх