Читать книгу Квант - Джим Аль-Халили - Страница 6

Глава 2. Истоки

Оглавление

Многие научно-популярные книги и даже учебники физики пропагандируют два мифа, связанных с происхождением квантовой механики. Само собой, часто о развитии науки говорят чересчур упрощенно, и это даже полезно для обучения. Научный прогресс в основном представляет собой запутанный и медленный процесс, и, только оглядываясь назад, когда теория или феномен уже полностью поняты, его историю можно рассказать в педагогическом, а не в хронологическом порядке. Для этого приходится отсеять некоторых личностей и некоторые события из общей массы, закрывая глаза на красивые истории многочисленных Нобелевских премий.

Так в чем заключаются два этих мифа?

Первый представляет собой упрощенное и неточное описание состояния физики в конце XIX века. Утверждается, что ученые того времени полагали, будто большая часть физики уже открыта и объяснена, а все физические явления можно понять, опираясь на представления о мире, покоящиеся на двух столпах – механике и законах Ньютона и недавно завершенной теории электромагнетизма Джеймса Максвелла. Оставалось только расставить точки над «i».

Второй миф гласит, что немецкий физик Макс Планк предложил революционно новую формулу для описания экспериментального результата в области термодинамики[4], который невозможно было воссоздать при помощи господствующей теории, и квантовая революция не заставила себя ждать.

КАК ВСЕ НАЧАЛОСЬ

Хотя эта книга не задумывалась как история квантовой механики или личностей, связанных с ее развитием, в этой главе я все же расскажу, как и почему зародилась эта область науки. В связи с этим, хотя мне и не хочется слишком погружаться в описание физики до квантовой механики, весьма интересно определить, когда именно и как все началось. Что касается первого мифа, правда в том, что к концу XIX века накопилось столько неотвеченных вопросов и столько необъясненных явлений, что прорыв был неизбежен. Физики и химики не могли даже согласиться, состоит ли материя из неделимых атомов или она последовательно и бесконечно делима. Они также не могли решить, применима ли механика Ньютона (уравнения, описывающие взаимодействие и движение макроскопических объектов[5] под влиянием сил) к более фундаментальной теории электромагнетизма Максвелла.

Как будто столь фундаментальных вопросов было недостаточно, ожесточенные споры шли по поводу относительно новых областей физики, таких как термодинамика и статистическая механика[6]. В экспериментальной сфере объяснения ждали фотоэлектрический эффект и излучение черного тела (я скоро опишу оба этих явления); кроме того, никто не понимал, как интерпретировать значение картины «линейчатого спектра» света, характерного для определенных элементов. В дополнение к этому весь мир был взволнован только что открытыми таинственными феноменами рентгеновских лучей (1895 год) и радиоактивности (1896 год), не говоря уже об открытии электрона (1897 год). В общем, физика была в раздрае.

Второй миф заключается в том, что в конце 1900 года Макс Планк совершил революцию в науке, предположив, что энергия распространяется сгустками (под названием «кванты») – ему нужно было ввести это понятие, чтобы понять, как теплые объекты излучают свое тепло, – и тут же возникла квантовая теория. На самом деле все было гораздо сложнее. Некоторые историки науки и вовсе отрицают, что Планк заслуживает хоть какого-то признания за «открытие» квантовой теории[7]. В отличие от многих великих революционных открытий, квантовая механика не обязана своим появлением озарению единственного гения. Ньютон прозрел, когда на ферме его матери ему на голову упало яблоко, которое и подтолкнуло его к открытию знаменитого закона всемирного тяготения (хотя и есть вероятность, что это событие легендарно). Невозможно отрицать, что Дарвину принадлежит заслуга вывода теории эволюции, а Эйнштейн разработал теории относительности. Но открыть квантовую механику в одиночку было невозможно. Ее разработка заняла тридцать лет и потребовала совместных усилий величайших ученых со всего мира.

Прежде чем продолжить, мне следует объяснить, почему я использую то понятие «квантовая теория», то «квантовая механика». Первое обычно применяется для описания положения дел в период с 1900 по 1920 год, когда все находилось на уровне простых постулатов и формул, которые помогали прояснить кое-какие вопросы природы света и структуры атомов. Настоящая революция произошла только в 1920-х годах, когда при описании основополагающей структуры субатомного мира на смену «механике» Ньютона пришла совершенно новая теория – квантовая механика.

Но давайте вернемся к вопросу о том, как все началось, и дадим на него честный ответ. В 1918 году Планк получил Нобелевскую премию по физике с формулировкой: «В знак признания услуг, которые он оказал развитию физики своим открытием квантов энергии». Поэтому, хотя мы и увидим, что другие, включая Эйнштейна и Больцмана, тоже могут претендовать на лидирующую роль в строительстве фундамента оригинальной квантовой теории, ключом к ней все же является концепция «кванта», которая впервые появилась в простой формуле Планка. Так что же именно он сделал?

Планк вырос в Мюнхене, учился в Берлине и получил докторскую степень в возрасте всего лишь 21 года. Через десять лет он стал профессором физики. Но прошло еще целых одиннадцать лет, прежде чем на лекции в Берлинском физическом обществе он предложил свою знаменитую формулу, которую вывел для конкретной цели, заключавшейся в том, чтобы решить давнюю проблему, связанную с тем, как некоторые объекты излучают тепло. Однако он отнесся к своей формуле скорее как к удобному математическому трюку и не сразу заметил, что она содержит в себе глубокую правду об окружающем мире[8].

Постоянная Планка

В соответствии с формулой Планка энергия мельчайшего сгустка света заданной частоты (один квант) равна частоте, умноженной на определенную постоянную. Эта постоянная называется постоянной действия Планка. Она обозначается буквой h и, как и скорость света с, является одной из универсальных постоянных природы.

Отношение энергии и частоты очень просто. Например, частота фиолетового света на одной стороне видимого диапазона вдвое больше частоты красного света на другой его стороне, так что квант фиолетового света обладает вдвое большей энергией, чем квант красного света.

Сегодня постоянная Планка знакома каждому студенту-физику. В единицах килограммов, метров и секунд ее значение чрезвычайно мало и составляет 6,63×10-34, и все же это одно из самых важных чисел в науке. Каким бы ничтожным ни было это число, главное, что оно не равняется нулю, ведь иначе квантового поведения бы просто не существовало.

Очень часто постоянную Планка комбинируют с другой фундаментальной постоянной природы, числом пи (π). Это число, как говорят всем школьникам, представляет собой отношение длины окружности к ее диаметру и все время появляется в физических уравнениях. На самом деле число h/2π так часто возникает в квантовой механике, что для него даже ввели специальный символ, который называется «h с чертой».


Излучение черного тела

Тепло Солнца, или тепловое излучение, которое вы летом ощущаете у себя на лице, достигает нас, проникая сквозь вакуум космоса. Однако вы, возможно, не знаете, что на путешествие от Солнца до Земли это излучение тратит ровно столько же времени (около восьми минут), сколько нужно солнечному свету, чтобы достигнуть нашей планеты. Причина этого заключается в том, что и тепловое, и видимое излучения Солнца являются электромагнитными волнами. Друг от друга они отличаются лишь длиной волны. Колебания волн видимого света более сжаты (длина волны у него меньше, а частота – больше), чем колебания волн, которые мы ощущаем как тепло. Солнце также испускает ультрафиолетовый свет, длина волны которого еще короче и который находится вне видимого диапазона.

Но электромагнитное излучение свойственно не только Солнцу. Оно характерно для всех тел, причем их излучение охватывает весь диапазон частот. Распределение частот зависит от температуры тела. Если твердое тело нагреть до достаточной температуры, оно начнет светиться, но по мере охлаждения его свечение будет сходить на нет, поскольку доминировать будет излучение с большей длиной волны – за пределами видимого диапазона. Это не означает, что тело перестанет испускать видимый свет: на самом деле интенсивность света будет слишком слаба, чтобы мы сумели его разглядеть. Само собой, вся материя также поглощает и отражает излучение, которое попадает на нее. То, какие длины волн поглощаются, а какие отражаются, определяет цвета всего, что мы видим.

Во второй половине XIX века физикам было очень интересно, как именно определенный теплый объект, именуемый черным телом, испускает излучение. Такие тела называются черными, потому что они представляют собой идеальные поглотители излучения и не отражают ни свет, ни тепло. Конечно же, черное тело должно каким-то образом отдавать энергию, которую оно поглощает, ведь иначе его температура будет стремиться к бесконечности! Следовательно, оно излучает тепло со всеми возможными длинами волн. Длина волны самого мощного излучения, само собой, зависит от температуры черного тела.

Почти во всех учебниках физики можно найти график, на котором изображено несколько кривых (называемых спектрами), показывающих, как мощность излучения черного тела зависит от длины волны излучения[9] при различных температурах. Все эти кривые начинаются с низкой мощности при очень коротких волнах, достигают максимума и снова падают при длинных волнах. Физиков вроде Макса Планка особенно интересовала точная форма этих кривых.

В науке часто случается, что появляются новые экспериментальные данные, которые необходимо объяснять теоретикам. Так было и со спектрами излучения черного тела. В 1896 году коллега Планка Вильгельм Вин вывел формулу, которая позволила ему построить кривую, прекрасно соотносящуюся с полученными им и в точности выверенными экспериментальными данными для коротких волн, однако не соответствующую результатам для длинных волн.

Примерно в то же время один из столпов физики XIX века, англичанин лорд Рэлей предложил другую формулу, имеющую более строгое теоретическое обоснование, чем уравнение Вина. Однако эта теория страдала от обратной проблемы: она прекрасно соответствовала данным для длинных волн, но совершенно не подходила для описания предельно коротких, находящихся вне видимого диапазона. Этот провал теории Рэлея был выражен в кривой, которая предсказывала, что тепловое излучение, испускаемое черным телом, возрастает по мощности по мере укорачивания волн и снижается до бесконечности в ультрафиолетовой области спектра. Эта проблема получила название «ультрафиолетовой катастрофы».

Вопреки многим популярным мнениям, Макс Планк заинтересовался излучением черного тела не из-за провала формулы Рэлея[10], а с целью поставить формулу Вина на твердый теоретический фундамент. Первые его попытки ни к чему не привели, и за ними последовал период очень напряженной работы, после которого он предварительно и довольно неохотно вывел новую, достаточно сильно отличающуюся от исходной формулу.

Будучи закоренелым консерватором, на ранних этапах своей карьеры Планк даже не верил в существование атомов, о которых говорили многие его современники, включая Людвига Больцмана. Планк полагал, что не за горами тот день, когда докажут, что материя непрерывна – то есть состоит не из фундаментальных «кирпичиков», а может быть бесконечно делима и все равно сохранять свою сущность. Однако в поисках решения проблемы излучения черного тела он основывал свою теорию именно на идеях Больцмана. Он представил свои результаты на семинаре Немецкого физического общества 14 декабря 1900 года, и эту дату часто считают днем рождения квантовой физики.

Его предположение было таково: если черное тело состоит из колеблющихся атомов – хотя стоит подчеркнуть, что Планк называл их просто «осцилляторами» (некими элементарными сущностями, которые осциллируют, или колеблются, на частоте, определяемой температурой тела), – то энергия, которую они испускают (излучение черного тела), зависит от частоты их колебаний. В таком случае чем выше их частота, тем больше энергии они могут испустить. Но важно то, что такие осцилляторы могут иметь лишь определенные режимы колебаний, а их частота повышается поэтапно, вместо того чтобы расти постепенно[11]. Следовательно, отдаваемая энергия может принимать только определенные значения, так как не все из них допустимы. Иными словами, энергия будет распространяться отдельными сгустками, или «квантами». Это было радикальным отступлением от теории электромагнетизма Максвелла, в рамках которой энергия считалась непрерывной.

Здесь необходимо сделать две ремарки. Во-первых, Планк не сразу понял следствия своей революционной идеи. По его собственным словам, введение понятия кванта энергии было «исключительно формальным допущением, и [он] даже не думал об этом, полагая лишь, что должен любым способом добиться положительного результата». Во-вторых, Планк не считал, что вся энергия состоит из неделимых крошечных сгустков. Для этого открытия потребовались еще пять лет и гений Эйнштейна.

4

От thermo – «тепло» и dynamics – «движение». Эта область науки изучает, как тепло и другие формы энергии переносятся между телами.

5

По сути, макроскопическим можно назвать любой видимый нами объект, который достаточно велик, чтобы вести себя логичным «неквантовым» образом, в то время как микроскопическими называют объекты, размер которых достаточно мал (на уровне атомов и меньше), чтобы их поведение определялось квантовыми законами.

6

Наука о том, как вывести макроскопические свойства материи из микроскопической физики.

7

Это расхождение во мнениях отлично описывается в работе философа Томаса Куна Black-Body Theory and the Quantum Discontinuity: 1894–1912 (Clarendon Press, Oxford, 1978) и в работе историка науки Хельге Крагха Quantum Generations: A History of Physics in the Twentieth Century (Princeton University Press, 1999).

8

Впоследствии Планк счел крайне сложным принять предсказания квантовой теории и много лет пытался найти способ опровергнуть свои выводы.

9

Иногда показывается, как мощность зависит от частоты, а не от длины волны. Однако, поскольку эти свойства волн эквивалентны (короткие длины волн соответствуют высокой частоте, а длинные – низкой), оба типа графиков дают нам одинаковую информацию.

10

Термин «ультрафиолетовая катастрофа» даже не использовался до 1911 года.

11

Это несколько напоминает разницу между игрой на гитаре и на скрипке. На грифе гитары есть «лады» – металлические порожки. Когда струну пальцем прижимают к порожку, находящемуся ниже требуемого лада, звучащая нота становится результатом вибрации струны на отрезке от этого лада до нижнего порожка. По очереди зажимая идущие друг за другом лады, мы изменяем длину вибрирующей струны, в результате чего высота звучания изменяется на полтона. В связи с этим гитара, как и фортепиано, не может издавать звук, высота которого находится между двух полутонов (если играющий на ней не применяет специальных навыков). В то же время на скрипке ладов нет, так что ее струны могут издавать звук любой частоты, или тона, в зависимости от того, куда именно поставить палец.

Квант

Подняться наверх