Читать книгу Космос. Иллюстрированная история астрономии и космологии - Джон Норт - Страница 22

3
Месопотамия
ВАВИЛОНСКАЯ АСТРОНОМИЯ В ПЕРИОД СЕЛЕВКИДОВ

Оглавление

Введение системы небесных координат – в данном случае деление зодиака на двенадцать знаков по тридцать градусов в каждом – имело громадное значение для развития математической астрономии. Точные планетные периоды могли быть получены и без нее – из наблюдений, осуществляемых в течение долгого времени, однако такая система имела существенное значение для анализа нюансов планетного движения. Мотивы проведения такого анализа должны были быть в той или иной мере рациональными, хотя они имели много общего с религией и астрологическими предсказаниями.

Древняя месопотамская звездная религия поощряла только примитивную астрологию простых предзнаменований. В других ближневосточных религиях, таких как орфизм и митраизм, поддерживалась чуть более развитая зодиакальная астрология, и с расширением Персидской империи некоторые из этих верований получили распространение в римской и греческой цивилизациях. Из всех восточных религий зороастризм заслуживает того, чтобы сказать о нем подробнее. Эта религиозная доктрина, приписываемая пророку Зороастре (или Заратустре), постепенно стала господствующей религией в Иране, и по сей день имеются изолированные общины, практикующие ее в этой стране и в Индии. Доктрина основана на моральном дуализме добрых и злых начал и имеет много общего с древнейшими вавилонскими мифами, например с мифом о противостоянии Мардука и Тиамат. Однако ее отношение к астрономии менее очевидно. В своих поздних версиях она способствовала распространению учения о том, что естественное место человеческой души – на небесах, или, точнее, принимая во внимание западные трактовки, на планетных сферах. Были те, кто говорил о связи между зороастрийскими верованиями и ростом числа гороскопов рождения, особенно в Греции. Существовало убеждение: когда душа нисходит с небес (где она жила в согласии с вращением звезд), чтобы вселиться в человеческое тело, она продолжает подчиняться звездам. (Подобные рассуждения можно найти, например, в диалоге «Федр» афинского философа Платона.) Такая философская идея не может исчерпывающе объяснить феноменальный расцвет астрологии в поздний эллинистический период, но как бы то ни было, сам расцвет представляется вполне реальным, а это существенно увеличило спрос на астрономические предсказания. Греки прослышали о Зороастре в V в. до н. э., за столетие до Платона, однако будет небезынтересно узнать, что человеком, в значительной степени ответственным за распространение в Греции зороастрийских философских идей, являлся один из величайших греческих астрономов, живший в одно время с Платоном. Речь идет об Евдоксе Книдском – об этом ученом мы подробнее поговорим в следующей главе.

Каково бы ни было философское влияние зороастризма, его астрономическое содержание довольно наивно. Существовало определенное число рутинных процедур, в ходе которых использовалось астрономическое знание, например предсказание того, каким будет урожай, по утреннему восходу Луны после первого появления Сириуса; однако нет никаких оснований полагать, что персы всерьез верили в саму предсказуемость подобного рода вещей. И даже само астрологическое учение, по всей видимости, оказалось заимствованным. Математическая астрономия, необходимая для практики составления гороскопов, была практически полностью вавилонской. Старейший из известных клинописных гороскопов датируется 410 г. до н. э. Его нашли в одном из вавилонских храмов. В век Платона греки уже отдавали должное «магам» или халдеям, и в течение всей классической Античности эти слова употреблялись как синонимы слова «астролог». Тем не менее этот факт не должен (как это часто делалось в прошлом) отрицать блестящие математические достижения вавилонян, легшие в основу греческой астрологии.

Сохранилось более трехсот клинописных табличек этого типа. Многие из них повреждены, другие разбиты на фрагменты, хранящиеся раздельно в музеях разных стран. Сегодня их принято делить на «процедурные тексты» (в которых содержится разъяснение методов расчета) и «эфемериды» (где приведены результаты вычислений для заданного периода времени, подобно тому как это делается в современном «Морском астрономическом ежегоднике»). Количественно эфемериды (в переводе с греческого это слово означает просто «годный на день») в три раза превышают процедурные тексты. Все они были найдены в Вавилоне (при раскопках в 1870–1890 гг.) и Уруке (при раскопках в 1910–1914 гг.), так что даже сегодня мы можем не до конца отдавать себе отчет в том, каковы все достижения этих людей.

Стремление решить проблему Луны, вполне возможно, привело к обнаружению аналогичных решений для планет. Сколько дней в одном месяце? Вавилонский месяц начинался с первого появления тонкого лунного серпа после захода Солнца. Отсчет дней велся также, начиная с вечера. При таком способе определения месяц содержал целое количество дней и, как показывает опыт, их число равно либо 29, либо 30. Но какому из них отдать предпочтение? Сегодня у нас есть общая картина явления – модель, в отношении которой мы можем применить стандартные геометрические процедуры и получить ответ. И даже сегодня это не так уж просто сделать. Не имея предшественников, способных снабдить их такой моделью, вавилоняне должны были действовать в обратном порядке. Для начала попробуем оценить наиболее очевидные трудности, с которыми они столкнулись, путем демонстрации того, как мы сами могли бы провести подобный анализ сегодня.

Начнем с грубого оценочного предположения, что продолжительность месяца равна в точности 30 дням. Солнце движется по зодиаку со скоростью примерно 1˚ в сутки, поэтому от одного до другого соединения с Луной оно пройдет 30˚. Если считать по соединениям, то более быстро движущаяся Луна должна будет пройти 390˚, то есть двигаться со скоростью 13˚ в сутки в течение 30-дневного периода. (Более точное среднее значение этого числа составляет 13,176˚, но скорость Луны может заметно меняться.) Однако для предсказания времени первого появления лунного серпа необходимо принять во внимание несколько факторов:

1. Поскольку Солнце обладает высокой яркостью, то два светила должны находиться на заданном минимальном расстоянии друг от друга, иначе лунный серп будет неразличим.

2. Время, за которое Луна преодолеет это расстояние, зависит от относительной скорости Луны и Солнца. Среднее значение относительной скорости равно примерно 12˚ в сутки, однако эта «суточная элонгация» может варьироваться в пределах двух-трех градусов в ту или другую сторону.

3. Критическое расстояние зависит от яркости фона неба, а она в свою очередь зависит от угла между горизонтом и линией, соединяющей заходящее Солнце и лунный серп (см. ил. 31). Это, в свою очередь, определяется несколькими факторами: а) временем года, которое есть не что иное, как другой способ определения положения Солнца на «эклиптике» – годовом пути Солнца, проходящем через середину пояса зодиака; b) отклонением Луны от этого пути, ее «эклиптической широтой», достигающей 5˚; и c) географическим положением наблюдателя (широтой), определяющей углы пересечения звездами горизонта при восходе и заходе.

Вот, вкратце, описание процедуры, которой мы, вероятно, должны следовать. Самое удивительное заключается в том, что вавилоняне умели каким-то образом определять многие факторы, анализируя свои наблюдения в начале месяца. Они проделывали это, используя только арифметические методы, то есть не прибегая к геометрическим моделям, и если мы воспроизводим здесь их результаты в графической форме, то только потому, что это экономит нам время. (Для получения полного представления о том, как это делалось на самом деле, нужно познакомиться с работой Отто Нейгебауера «Astronomical Cuneiform Texts», где содержится соответствующий расшифрованный и проанализированный материал.)


31

Первое наблюдение лунного серпа. Солнце находится ниже западного горизонта, линия его спуска не показана. (Она не совпадает с эклиптикой и определяется вращением неба вокруг Полюса мира.) Луна может находиться в пределах чуть более 5° в ту или другую сторону от эклиптики.


Известны две основные системы, посредством которых осуществлялось представление различных солнечных, лунных и планетных движений. В первой, называемой «Системой А», предполагалось, что на достаточно большом участке зодиака скорость (например, Солнца) остается постоянной величиной с каким-либо определенным значением, затем происходит изменение значения, и оно снова считается постоянным в течение достаточно продолжительного промежутка времени до момента следующего изменения и т. д. Возникает потребность в правилах перехода. Если представить зависимость скорости от времени графически, то получим кривую, напоминающую по внешнему виду зубчатую стену крепости с бойницами (в общем случае – нерегулярную), которую часто называют «зигзагообразной функцией». «Система Б», на первый взгляд, выглядит более сложно. В ней предполагается, что каждая строка в таблице положений (или чего-либо другого) отличается от предыдущей, но разница образует постоянное положительное либо отрицательное число, исключая те случаи, когда возникает значение, заведомо выходящее за пределы максимума или минимума. Если это случается, направление изменений (увеличение или уменьшение) меняется на противоположное. Если мы построим график по этой таблице значений, он будет иметь неровную пилообразную форму зигзагообразной функции. Система А, как было установлено на практике, является более гибкой, поскольку может быть легко использована с любым количеством шагов различной длины, а это делает ее более точной по сравнению с жесткой конфигурацией Системы Б.

Перемена направлений в зигзагообразных функциях производится в соответствии со строгими правилами, которые легче всего объяснить с помощью ил. 32. На этом рисунке изображен график, построенный по эфемеридам, составленным на 179 г. эры Селевкидов (133–132 гг. до н. э.). По горизонтальной шкале отложена последовательность месяцев (как они тогда понимались), их названия перечислены в первом столбце таблички. Они, как выяснилось, маркируют дни, когда происходило соединение Солнца с Луной. Вертикальная шкала соответствует второй колонке таблички, содержащей шестидесятеричные числа, равные по порядку величины 28 или 29. Следующая колонка таблицы, не отображенная на графике, может быть интерпретирована как перечисление долгот Солнца и Луны в моменты их соединений. Смысл чисел, записанных во второй колонке, стал понятен только после того, как их проанализировали современные ученые. Поскольку оказалось, что вторая колонка содержит разности между соседними записями в третьей колонке, она (вторая колонка), очевидно, должна содержать, как мы сказали бы сейчас, скорости Солнца (изменение долготы в течение месяца). Пользуясь графическим способом объяснения чисто арифметических величин, мы можем сказать: зигзаги, построенные с помощью прямых линий, возникли как аппроксимация вавилонянами определенного процесса, для отображения которого нам сегодня понадобилась бы по меньшей мере синусоида. И все же это было их выдающимся достижением.

Можно легко посчитать период зигзагообразной функции в месяцах. На ил. 32 он записан в виде числа 12;22,08,53,20. Это значение соответствует продолжительности года, измеряемой в синодических месяцах. Его получили, очевидно, не прямыми наблюдениями, а с помощью одного из циклических соотношений, о которых мы упоминали ранее. Похоже, в данном случае использовалось равенство: 810 лет = 10 019 месяцев. Конечно, для выведения этих уравнений необходимо было проводить наблюдения, но поиск правильных числовых соотношений также играл свою роль. К сожалению, нам известны только итоговые результаты этих расчетов.


32

Зигзагообразная функция вавилонян в современном графическом представлении.


Нашлись и другие характерные равенства, например 225 лет и 2783 месяца, где на один год приходится 12;22,08 месяцев. Это число обнаружено в табличках, составленных с использованием как Системы А, так и Системы Б. Одним из наиболее неожиданных открытий для тех, кто работал с этими клинописными табличками, стало то, что, хотя Система А была более древней, обе системы регулярно использовались в течение всего периода, к которому относятся сохранившиеся таблички (ок. 250–50 гг. до н. э.), как в Вавилоне, так и в Уруке.

Относительно редко встречающиеся лунные эфемериды охватывали периоды более одного года. Большинство из них содержали столбцы со скоростями и положениями Луны и Солнца. В некоторых указывалась продолжительность дней или ночей, согласующаяся с положением Солнца в предыдущем столбце. У нас есть возможность рассчитать это, используя методы сферической тригонометрии, но вавилоняне пользовались только арифметическими методами. Иногда встречаются колонки с широтами Луны, а иногда – колонки с максимальными фазами затмений. Алгоритм (принцип расчета) для определения максимальной фазы затмения применялся каждый месяц, вне зависимости от того, намечалось оно или нет. Это может быть расценено, с одной стороны, как нечто несовместимое с духом эмпирической науки, с другой, как свидетельство высокого уровня абстрагирования и ясного осознания понятия математической функции. В числе вспомогательных процедур можно упомянуть такие, как исправление результатов расчета скорости Солнца, она на первом этапе вычислений считалась постоянной, но о ее переменности было хорошо известно. Осуществление этих исправлений в Системе Б сопряжено с бо́льшим количеством трудностей, чем в Системе А, а это отчасти объясняет причину ее долгого использования.

Как уже пояснялось на с. 85, существовало ясное понимание того, что ни лунное, ни солнечное затмения невозможны в случае, если потенциально затмеваемый объект располагается в момент новолуния или полнолуния на слишком большой широте. Предсказание солнечных затмений гораздо более сложная проблема, чем предсказание лунных. По этому поводу можно только сказать, когда они не произойдут. Для их предсказания необходимо обладать гораздо большей информацией о расстояниях между Землей, Солнцем и Луной и их размерах. Не существует твердых доказательств того, что были известны закономерности повторяемости солнечных затмений (еще один способ их предсказания), хотя есть те, кто настаивает на обратном.

Упомянутые таблички содержали данные о долгих периодах солнечных и лунных движений, но имелись и другие, в которых с помощью аналогичных методов отмечались ежедневные изменения, и из них могло быть выведено, например, равенство: 251 синодический месяц = 269 аномалистических месяцев. В данном случае продолжительность синодического месяца получалась равной 29;31,50,08,20 суткам, а аномалистического – 27;33,20 суткам. Могут возникать сомнения по поводу высокой точности этих чисел, однако сегодня мы пользуемся практически идентичными значениями, отличающимися от приведенных на одну шестимиллионную и четыре шестимиллионных соответственно. (С того времени эти периоды изменились, хотя и на очень малую величину, так что приведенное сравнение нельзя считать абсолютно строгим, хотя это не умаляет его исключительных достоинств.) Еще более интересно провести историческое сравнение продолжительности указанного здесь вавилонского синодического месяца с месяцем, используемым в Европе эпохи Высокого Средневековья в так называемых Толедских таблицах. Эти параметры идентичны как по значению, так и по целям, хотя их разделяет более тысячи лет.

Когда в эпоху Селевкидов вавилоняне обратили свое внимание на планеты, их арифметические преобразования (используем еще раз нашу графическую аналогию) стали на шаг ближе к идеальной синусоиде. Кроме того, существовали таблички, которые задавали, если можно так выразиться, широ́ты Луны, и в них простые зигзагообразные линии были уже модифицированы, что приблизило их к идеальной синусоиде, как показано на ил. 33. Перед объяснением того, как действовали вавилоняне, будет полезно получить примерное представление о реальном движении планет и о том, как оно воспринимается земным наблюдателем. Поэтому следующее неисторическое отступление содержит изложение базовых сведений по вопросам, разбираемым в этой и следующих главах, в которых рассматриваются классические теории планетных движений.


33

Графическое представление решения вавилонянами того, что может быть обозначено как проблема лунной широты. (Здесь мы принимаем во внимание только общие принципы. Строго говоря, все это, скорее всего, делалось для получения вспомогательной функции, позволяющей осуществить предвычисление затмений, но базовая идея может быть выражена и в категориях определения долготы.)


Космос. Иллюстрированная история астрономии и космологии

Подняться наверх