Читать книгу Как не ошибаться. Сила математического мышления - Джордан Элленберг - Страница 12

Часть I. Линейность
Глава вторая. Локально прямая, глобально кривая
Метод исчерпывания

Оглавление

Чему равна площадь данного круга?

В современном мире это настолько стандартная задача, что ее можно включать в SAT[54]. Площадь круга равна πr2, а в нашем случае радиус равен 1, значит, площадь этого круга равна π. Однако две тысячи лет назад вопрос был открытым и настолько важным, что привлек внимание Архимеда.



Почему вопрос площади окружности оказался настолько сложным? Во-первых, на самом деле древние греки не считали π числом, как считаем мы. В их понимании все числа были целыми, то есть такими, с помощью которых можно что-то подсчитать: 1, 2, 3, 4… Однако теорема Пифагора[55] – первый большой прорыв в древнегреческой геометрии – превратила всю их систему счисления в руины.

Перейдем к следующему рисунку.



Теорема Пифагора гласит, что квадрат гипотенузы (сторона прямоугольного треугольника, которая нарисована здесь по диагонали и не проходит через прямой угол) равен сумме квадратов двух других сторон, или катетов. В данном примере квадрат гипотенузы равен 12 + 12 = 1 + 1 = 2. Это означает, что гипотенуза длиннее 1, но короче 2. Проверяется без всяких теорем – просто на глаз. Сам факт, что длина гипотенузы не представляет собой целое число, не был проблемой для древних греков. Может быть, мы просто измеряли все не в тех единицах. Если мы выберем такую единицу длины, чтобы длина катетов была равна 5 единицам, тогда вы с помощью линейки легко проверите, что в таком случае длина гипотенузы составит почти 7 единиц. Почти – но все-таки немного больше, поскольку квадрат гипотенузы равен:


52 + 52 = 25 + 25 = 50,


но если длина гипотенузы составляла бы 7 единиц, квадрат гипотенузы был бы равен 49.

А если мы взяли бы катеты длиной 12 единиц, длина гипотенузы была бы равна почти 17 единиц, но все же немного короче, поскольку 122 плюс 122 равно 288, что незначительно меньше чем 172, равное 289.



Примерно в V столетии до нашей эры один из представителей пифагорейской школы сделал потрясающее открытие: не существует способа измерить равнобедренный прямоугольный треугольник таким образом, чтобы длина каждой его стороны представляла собой целое число. Современный человек сказал бы, что «квадратный корень из 2 – это иррациональное число», то есть число, которое нельзя представить в виде соотношения двух целых чисел. Но пифагорейцы так не говорили. Разве могли они сказать нечто подобное? В основе их представлений о количестве лежала идея о соотношении целых чисел. Следовательно, в их понимании длина гипотенузы, как оказалось, вообще не есть число.

Это повлекло за собой неразбериху. Вы наверняка помните, что пифагорейцы были крайне своеобразными людьми. Их философия представляла собой рагу из суждений, часть которых мы назвали бы математикой, часть – религией и оставшуюся часть – психическим расстройством. Пифагорейцы были убеждены, что нечетные числа символизируют добро, тогда как четные – зло, что по ту сторону Солнца находится планета Антихтон (Антиземля, Противоземля), а также что нельзя есть бобы, как писали некоторые, потому, что в них находятся души умерших. Ходили слухи, будто Пифагор разговаривал с домашним скотом (он велел животным не есть бобы), а также что он был одним из немногих древних греков, носивших штаны[56][57].

Математика пифагорейцев была неразрывно связана с их идеологией. Легенда (которая, возможно, не совсем соответствует действительности, но дает правильное представление о пифагорейском стиле) гласит, что первым пифагорейцем, открывшим иррациональность квадратного корня из 2, был человек по имени Гиппас; в награду за доказательство этой отвратительной теоремы соратники бросили его в море, где он и утонул.

Но теорему не утопишь. Преемники пифагорейцев, такие как Евклид и Архимед, понимали, что нужно просто закатать рукава и начать все измерять, даже если придется ради этого выйти за пределы высокой стены, окружавшей цветущий сад целых чисел, столь милый их сердцу. Никто не знал, можно ли выразить площадь круга с помощью одних только целых чисел[58]. Однако колеса необходимо строить, а силосные башни заполнять[59], а значит, такие измерения должны быть выполнены.

Первоначальную идею предложил Евдокс Книдский, а Евклид включил ее в 12-ю книгу «Начал». Однако именно Архимед довел их дело до конца. В наши дни мы называем этот подход методом исчерпывания. А начинается он вот с чего.



Изображенный на этом рисунке квадрат называется «вписанный квадрат»: каждый его угол только касается окружности, но не выходит за ее границы. Зачем это делать? Потому что круг – нечто загадочное и пугающее, тогда как с квадратом все просто и ясно. Если у вас есть квадрат, длина стороны которого равна Х, его площадь равна Х умножить на Х – именно поэтому мы и называем умножение числа на самого себя возведением в квадрат! Основное правило математической жизни гласит: если мироздание ставит перед вами сложную задачу, попытайтесь решить вместо нее более простую – с расчетом на то, что упрощенный вариант окажется настолько близким к первоначальной версии, что мироздание не станет возражать против такого решения.

Вписанный квадрат можно разбить на четыре треугольника, каждый из которых представляет собой не что иное, как равнобедренный прямоугольный треугольник, который мы только что нарисовали[60]. Следовательно, площадь такого квадрата в четыре раза больше площади треугольника. Треугольник в свою очередь – это то, что получится, если взять квадрат 1 × 1 и разрезать его пополам, как бутерброд с тунцом.



Площадь такого бутерброда равна 1 × 1 = 1, значит, площадь каждого треугольника равна 1/2, а площадь вписанного квадрата составляет четыре раза по 1/2, то есть 2.

Кстати, предположим вы не знакомы с теоремой Пифагора. Так вот, на всякий случай сообщаю: вы ее все-таки знаете! Или как минимум знаете, что она должна гласить применительно к данному прямоугольному треугольнику. Ведь прямоугольный треугольник, представляющий собой нижнюю часть нашего бутерброда, точно такой же, как и верхний левый фрагмент вписанного квадрата. А его гипотенуза – сторона вписанного квадрата. Следовательно, если вы возведете длину гипотенузы в квадрат, то получите площадь вписанного квадрата, которая равна 2. Другими словами, длина гипотенузы есть число, квадрат которого равен 2, или, если использовать привычную и более лаконичную формулировку, квадратный корень из 2.

Вписанный квадрат полностью находится в пределах окружности. Если его площадь равна 2, площадь круга должна составлять минимум 2 единицы.

Теперь давайте нарисуем другой квадрат.



Этот квадрат, который обозначается термином «описанный квадрат», также касается окружности всего в четырех точках, но теперь окружность находится внутри него. Длина сторон такого квадрата равна 2 единицам, значит, его площадь составляет 4 единицы. Следовательно, теперь мы знаем, что площадь круга равна максимум 4 единицам.

Возможно, иллюстрация того, что число π должно находиться в пределах от 2 до 4, производит не такое уж большое впечатление. Но Архимед только начинает. Возьмите четыре вершины вписанного квадрата и обозначьте на окружности новые точки, равноудаленные от каждой пары смежных вершин. Теперь у вас на окружности восемь точек, расположенных на равном расстоянии друг от друга. Соединив их, вы получите вписанный восьмиугольник, или, если говорить на техническом языке, «стоп-сигнал».



Вычислить площадь вписанного восьмиугольника немного труднее, но я не собираюсь утруждать вас тригонометрией. Важно, что мы по-прежнему имеем дело с прямыми и вершинами, а не с кривыми, поэтому данную задачу можно было решить с помощью методов, которые были в распоряжении Архимеда. Так вот, площадь восьмиугольника в два раза больше квадратного корня из 2, то есть примерно 2,83.

Вы можете сыграть в ту же игру с описанным восьмиугольником, площадь которого равна 8(√2–1), немногим более 3,31.



Таким образом, площадь круга находится в пределах от 2,83 до 3,31.

Но зачем останавливаться на этом? Вы можете обозначить на окружности точки, равноудаленные от вершин восьмиугольника (вписанного или описанного), – и получите шестнадцатиугольник; дополнительные тригонометрические расчеты покажут, что площадь круга находится в пределах от 3,06 до 3,18. Проведите процедуру еще раз, чтобы получить 32-угольник, а затем повторите снова и снова – и вскоре получите нечто похожее на такую фигуру.



Но разве это не окружность? Разумеется, нет! Это правильный многоугольник с 65 536 сторонами! Неужели вы не видите?

Великое озарение Евдокса и Архимеда состоит в том, что на самом деле не имеет значения, что это за фигура – окружность или многоугольник с очень большим количеством очень коротких сторон. Площади этих двух фигур достаточно близки для любых возможных целей. Площадь небольшой области между окружностью и многоугольником была «исчерпана» в процессе нашего неутомимого последовательного приближения. Да, окружность – это кривая, это действительно так. Но каждый крохотный фрагмент этой кривой можно приблизить к идеально прямой линии, подобно тому как крохотный кусочек поверхности Земли, на котором мы стоим, приближен к идеально ровной плоскости[61].

Следует запомнить девиз: локально прямая, глобально кривая.

Или лучше представьте: вы мчитесь по направлению к окружности с большой высоты; сначала вы видите всю окружность;



затем только один сегмент дуги окружности;



а затем еще более мелкий сегмент.



Продолжайте это до тех пор, пока, приближаясь все больше и больше, вы не увидите нечто напоминающее прямую линию. Ползущему по кругу муравью, видящему лишь пространство, непосредственно его окружающее, представляется, будто он ползет по прямой. Точно так же человеку, стоящему на поверхности Земли, кажется, что он стоит на плоскости (если только он не окажется настолько проницательным, что обратит внимание, как на горизонте поднимаются приближающиеся издалека объекты).

54

SAT (Scholastic Assessment Test, букв. «академический оценочный тест») – отборочный экзамен для выпускников школ на определение академических способностей. Прим. М. Г.

55

Кстати, нам неизвестно, кто первым доказал теорему Пифагора, хотя ученые почти убеждены, что это был не Пифагор. На самом деле, помимо засвидетельствованного современниками факта существования некоего ученого мужа с именем «Пифагор», жившего и обретшего славу в VI веке до нашей эры, мы ничего о нем не знаем. Основные сведения о жизни и работе Пифагора появились лишь через 800 лет после его смерти. К тому времени реального человека Пифагора полностью затмил миф о Пифагоре, вобравший в себя философские учения мыслителей, называвших себя пифагорейцами.

56

См.:Christoph Riedweg. Pythagoras: His Life, Teaching, and Influence. Ithaca; New York: Cornell University Press, 2005, p. 2.

57

Российским ученым известно со школы, что пифагоровы штаны во все стороны равны. Прим. М. Г.

58

На самом деле нельзя, но до XVIII века никто не смог это доказать.

59

В действительности силосные башни не были круглыми до начала ХХ века, когда профессор Висконсинского университета Хорас У. Кинг не придумал – чтобы решить проблему порчи продукции, лежащей в углах башни, – цилиндрическую конструкцию, широко распространенную в наше время.

60

Точнее говоря, каждый из этих четырех фрагментов можно получить из исходного равнобедренного прямоугольного треугольника, вращая его по кругу на плоскости. Давайте примем без доказательств тот факт, что такие манипуляции не меняют площадь фигуры.

61

Во всяком случае, если вы, как и я, живете на Среднем Западе США.

Как не ошибаться. Сила математического мышления

Подняться наверх