Читать книгу Никола Тесла. Пробуждение силы. Выйти из матрицы - Дмитрий Крук - Страница 5
Часть первая. Никола Тесла
Глава 2. Научно-техническое наследие
ОглавлениеВ этой главе рассматриваются преимущественно только те работы, изобретения, идеи и научные открытия Николы Теслы, в отношении которых имеется определенность касательно сути принципа и времени его открытия. Также нужно отметить, что нижеперечисленные сведения основываются на достоверно аутентифицированных источниках, как правило, это прижизненные лекции, статьи и иные публикации в научных и научно-популярных изданиях, а также патенты.
1882–1888 гг. Открытие явления вращающегося магнитного поля, изобретение индукционного двигателя и создание комплексной системы промышленного применения многофазных переменных токов. Несмотря на кажущуюся простоту изобретений, их появление было связано с преодолением огромной инерции мышления целой индустрии, самых высококвалифицированных инженеров-электротехников и выдающихся ученых. Явление переменного тока давно было известно, с ним экспериментировали и отчасти использовали в промышленности, но только появление системы многофазных токов и особенно электродвигателей Теслы открыло путь к промышленной революции. В течение двадцати лет компания Вестингауза выиграла более 20 судебных процессов (все до единого), направленных на оспаривание приоритета Теслы на изобретения в этой области. Тесла был первым, именно Тесла является первопроходцем, открывшим эру современной электроэнергетики. Однако коммерческая привлекательность изобретений Теслы пробудила совсем другую силу.
Фото 24. Первый индукционный двигатель Николы Теслы, изобретенный в 1884 г.
Идет долгое и ожесточенное соперничество крупных капиталов за мои права на патенты; оно пробудило озлобленность торгашей и зависть собратьев по профессии… Но, несмотря на все усилия изобретательных адвокатов и экспертов, судебные решения подтвердили мои права на приоритет во всех без исключения случаях.
Никола Тесла, «Личные воспоминания», 1915 г. (24)
Учитывая, что до сих пор вопрос приоритетов в этой области является до удивления болезненным и заслуги Теслы сплошь и рядом ставятся под сомнение, любителей подискутировать отсылаем к советскому академическому изданию (25), где вопрос разобран основательно и справедливо. Из этого же издания здесь уместно привести высказывание выдающегося электротехника с мировым именем Михаила Осиповича Доливо-Добровольского. Позиция русского инженера, являющегося одним из создателей промышленной техники трехфазного тока в Германии, возглавившего в 1909 г. крупнейший немецкий электротехнический и машиностроительный (и военный) концерн AEG, такова:
Я обязан добавить, что приоритет относительно многофазных машин принадлежит Тесле… Если потрудиться заглянуть в его патенты, то легко можно усмотреть, что благодаря своим опытам Тесла уже давно раскрыл характеристики этих двигателей… Я бы хотел довести до вашего сведения именно дату патента, играющую принципиальную роль в этом историческом событии.
Михаил Осипович Доливо-Добровольский, 1891 г. (25)
Под руководством М. О. Доливо-Добровольского в 1891 г. была проведена Лауфен-Франкфуртская передача электроэнергии напряжением 15 кВ на расстояние 170 км, что было неслыханным достижением для того времени и считается началом современной электрификации. Поэтому будет также уместно привести слова главного инженера швейцарской электротехнической компании, которая непосредственно занималась Лауфен-Франкфуртской электропередачей:
Трехфазным токам, применявшимся во Франкфурте, мы обязаны трудам г. Теслы, что совершенно ясно видно из его патентных спецификаций.
Чарльз Юджин Браун, 1891 г. (26)
Важно отметить, что, несмотря на огромный вклад, который внесли в усовершенствование и развитие электроэнергетики целые поколения последующих разработчиков, особенно теоретиков, никаких принципиально новых физических открытий в этой области не сделано и по сию пору.
Независимо от принятого мнения, будь оно тем более несправедливым по отношению к изобретателю, никому не разрешается заходить так далеко, чтобы осуждать его в таком случае, как теории и интерпретации его изобретения. Теории приходят и уходят, но мотор работает, практический результат достигнут, и техника продвинута вперед его стараниями и усилиями.
Никола Тесла, «Трехфазный патент», 1892 г. (27)
Интересно, что по свидетельству О‘Нила в 1920-х гг. Тесла также разрабатывал компоненты системы для высоковольтной передачи постоянного тока (6), которая при очень высоких напряжениях на дальних расстояниях в ряде случаев может быть экономичнее, чем ЛЭП переменного тока. Разработкой таких систем практически одновременно в начале 1930-х занялись шведы (ASEA), немцы (AEG и Siemens) и американцы (GE). Вопрос приоритетов в этой области требует дополнительного исследования.
1891 г. Тесла разрабатывает и патентует совершенно новый вид осветительных приборов – люминесцентных ламп различных типов (сегодня они известны как лампы «дневного света»). Само явление свечения газов и газового разряда было уже известно, но именно Тесла первым создал и запатентовал промышленную систему электрического освещения газоразрядными лампами, которая состояла из источника высокого напряжения высокой частоты и ламп нескольких типов.
По-видимому, именно Тесла еще в 1889 г. первым ввел в колбу лампы люминофоры – специальные вещества, которые преобразуют ультрафиолетовое излучение в видимый свет (6). Позднее это изобретение было приписано немцу Э. Гермеру (Edmund Germer), которого несколько десятилетий называли «отцом люминесцентных ламп». Патент Э. Гермера, датируемый 1926 годом, приобрела «General Electric», которая и вывела изобретение на рынок в 1930-х.
Фото 25. Никола Тесла демонстрирует люминесцентные лампы в лекции перед AIEE, 1891 г. (28)
1891 г. Тесла патентует и широко применяет в экспериментах механический осциллятор, обладающий уникальными свойствами даже по сегодняшним меркам. С его помощью Тесла изучает явление резонанса механических колебаний и действие ультразвука. В то время ультразвук только-только научились получать с помощью простого свистка. Механический осциллятор Теслы позволял не только осуществлять регулировку частоты и мощности в широких пределах, но и был охарактеризован изобретателем как «простейшая форма вибрационной механической системы, в которой по природе конструкции прилагаемая сила всегда находится в резонансе с естественной периодичностью» (29).
Тесле принадлежит идея использования ультразвука для обнаружения подводных лодок (30), а механических (сейсмических) колебаний – для обнаружения месторождений полезных ископаемых. Здесь Тесла, вне всякого сомнения, опередил науку и технику на десятки лет. Стоит отметить, что в 1930-х годах разработками Теслы интересовались главный геолог и инженеры Техасской нефтяной компании, которые вели консультации с изобретателем, касающиеся геофизики и геологоразведки (8).
Широко распространена версия о том, что большое Нью-Йоркское землетрясение 1897 года было вызвано экспериментами Теслы по изучению механического резонанса. В том же году Тесла заявил журналистам, что с помощью своих осцилляторов вполне в состоянии положить конец человеческой цивилизации.
1891 г. Тесла является основателем практически применимой высокочастотной электро- и радиотехники. Первоначально Тесла в целях получения колебаний высокой частоты конструировал специальные модификации асинхронного двигателя, рассматривая его в качестве универсального преобразователя не только типа энергии, но и напряжения, силы тока, частоты, числа фаз. В одной из запатентованных модификаций такой электрической машины он довел число полюсов до 384 и, перепробовав целый ряд других ухищрений, достиг частоты изменения тока примерно 30 кГц, после чего перешел на немашинные способы генерации токов высокой частоты и высокого напряжения – специальные резонансные колебательные контуры, называемые ныне осцилляторами или трансформаторами, а также просто катушками Теслы разных типов.
Попытаться перечислить области практической применимости и оценить значение катушки Теслы для техники и науки, особенно поисковых исследований, – безнадежное дело.
Здесь отметим только, что высокочастотные высоковольтные трансформаторы Теслы непосредственно использовались при создании в 1930-х годах первых резонансных циклических ускорителей – циклотронов, в которых тяжёлые заряженные частицы ускоряются под действием высокочастотного электрического поля.
Изобретатель первого циклотрона (1931) и лауреат Нобелевской премии по физике 1939 года «за изобретение и создание циклотрона и за результаты, полученные с его помощью», выдающийся американский ученый, один из ведущих физиков Манхэттенского проекта Э. О. Лоуренс (Ernest Orlando Lawrence) в своей Нобелевской лекции помянул добрым словом катушку Теслы, которая, по его словам, способствовала «плодотворной стадии развития» в эволюции ускорителей. Это, кстати, едва ли не единственный случай за всю историю Нобелевской премии, когда на церемонии были так или иначе упомянуты предшествующие достижения Николы Теслы.
Небезынтересно добавить, что в 1930-х годах один из ближайших сотрудников Э. Лоуренса объявил в научной печати, что катушки Теслы «не могут быть удовлетворительно рассмотрены с помощью математики» (4). Что это значит, будет рассмотрено позже.
Истина заключается в том, что электрики были снабжены настоящей лампой Аладдина. Все, что они должны сделать, – это потереть её.
Никола Тесла, «Как электрической лампой Аладдина можно построить новые миры», 1908 (31)
1891 г. и ранее. Тесла одним из первых исследовал воздействие высокочастотных электрических токов на человеческий организм. В «войне токов», развернувшейся с начала 1888 г., Тесла продемонстрировал решающий аргумент в доказательство безопасности переменного тока высокой частоты, пропустив через свое тело высокочастотный переменный ток напряжением в десятки и даже сотни киловольт, что стало мировой сенсацией. В этих зрелищных показах вокруг тела ученого образовывалась светящаяся электрическая «аура» (коронный разряд). В научно-теоретическом отношении, как считается, формально Тесла этим экспериментом первым доказал существование поверхностного (или скин-) эффекта, математически предсказанного Хэвисайдом в 1885 г.
Понятно, что эти опыты стали тут же воспроизводиться в научных лабораториях всего мира и исследоваться под разным углом. Выявленные свойства электрической энергии, при терапевтических дозах, изменять функциональное состояние органов и систем человека легли в основу целого направления медицины – электротерапии. Устройства медицинского назначения, основанные на высокочастотных осцилляторах Теслы, стали выпускаться в промышленных масштабах уже в конце XIX века, а вот сам метод получил название дарсонвализация.
Когда доктор д’Арсонваль заявил, что сделал такое же открытие, касающееся физических эффектов, вызываемых воздействием необычайно высоких частот на человеческое тело, начался ожесточенный спор на тему установления истинного автора этого открытия. Французы, горя желанием почтить своего соотечественника, сделали его членом Академии, совершенно игнорируя мои ранние публикации. Решившись принять меры для восстановления справедливости, я встретился с доктором д’Арсонвалем. Его личное обаяние полностью обезоружило меня, и я позабыл о своем намерении, решив довольствоваться тем, что есть. Похоже, мое разоблачение предвосхитило его, и он стал использовать мой аппарат в своих показах. Окончательную оценку я оставляю следующему поколению.
Никола Тесла, «Механическая терапия» (7)
г. Тесла 20 мая 1891 г. в Нью-Йорке сделал важное сообщение; этот экспериментатор очень искусно… пришел к тем же выводам, что и я, относительно физиологических действий, однако он располагал несравнимо более сильными средствами.
Д’Арсонваль, июль 1891 г. (25)
Позднее появились многочисленные «изобретатели» на эту тему. Например, в 1949 г. супруги Кирлиан из Краснодара запатентовали новый способ фотографирования свечения объектов, находящихся под воздействием токов высокой частоты и высокого потенциала, и теперь это свечение называется «эффектом Кирлиана», хотя правильно называть его «Тесла-свечением».
1892 г. В ходе лекции в Королевском институте Великобритании Тесла продемонстрировал опыт, на основе которого 40 лет спустя были сделаны первые электронные микроскопы.
Конструкция лампы Тесла очень проста: сферическая стеклянная колба с разреженным воздухом, в центре которой на конце проходящего сквозь колбу провода крепилась частица твердого, тугоплавкого материала – катода. Катод запитывался однопроводным током высокой частоты и высокого потенциала.
Под действием высокого напряжения молекулы газа начинают с огромной скоростью ударяться много раз в секунду об электрод, который мгновенно раскаляется до любой степени накала. В результате сочетания автоэлектронной, термоэлектронной и вторичной эмиссии электронов, распространяющихся из катода почти прямолинейно, на поверхности колбы возникает геометрическая проекция катода с очень большим увеличением.
В колбе, откуда почти полностью откачан воздух, электричество истекает от электрода при помощи независимых носителей… Должны быть какие-нибудь неровности, даже если поверхность отшлифована, что, конечно, невозможно в случае большинства тугоплавких материалов, которые применяются в качестве электродов… Глазу поверхность электрода представляется равномерно светящейся, но на нем есть точки, которые постоянно перемещаются и блуждают, температура которых гораздо выше средней, и это существенно усиливает процесс распада. То, что нечто подобное происходит, по крайней мере когда температура электрода немного ниже, можно подтвердить следующим достаточным экспериментальным доказательством. Хорошенько откачаем воздух из колбы, так, чтобы при довольно высоком потенциале разряд не мог пройти, то есть светящийся, ибо слабый, невидимый разряд проходит всегда, при любых условиях. Теперь медленно и осторожно увеличим потенциал, покидающий первичный ток не более чем мгновенно. В какой-то момент на колбе появляются два, три или полдюжины светящихся пятнышек. Эти места на стекле, очевидно, подвергаются более интенсивной бомбардировке, чем другие, что происходит вследствие неравномерно распределенной электрической плотности, обусловленной, конечно же, резкими выступами, или, вообще говоря, неровностями электрода. Но светящиеся участки постоянно перемещаются, что особенно хорошо видно, если умудриться создать их очень мало, а это говорит о том, что форма электрода постоянно меняется.
Никола Тесла, лекция в Лондонском Королевском научном обществе, 1892 г.
Фото 26. Полевой эмиссионный электронный микроскоп: а) подлинный рисунок Теслы 1892 г.; б) современная схема принципа работы (32); в) пример автоэмиссионного изображения вольфрамового электрода, полученного в современном электронном микроскопе (32)
Приведенная цитата – точное описание картинки электронного микроскопа (Фото 26), сочетающего принципы полевой и термоэлектронной эмиссий.
Надо сказать, что, несмотря на то что субатомная структура строения вещества в то время еще была совсем неясна и Тесла называет в качестве причины появления изображения на колбе не электроны (официально открыты только несколько лет спустя), а «наэлектризованные атомы», суть открытого им принципа это не меняет. Он не только получил увеличенное во много раз изображение электрода, но и правильно понял и идентифицировал основные принципы его появления: «наэлектризованные атомы» нормально отталкиваются от поверхности электрода, формируя изображение во многом согласно законам геометрической оптики, и первым применил простейшие методы фокусировки такого потока для достижения нагрева или свечения.
В последующем открытие автоэлектронной (полевой) эмиссии электронов было приписано американскому физику-экспериментатору Роберту Вуду, который не более чем лишь повторил вышеописанный опыт Теслы: «Открытие явления автоэлектронной эмиссии в 1897 году связано с именем замечательного экспериментатора Роберта Вуда. При исследовании вакуумного разряда Вуд заметил в сильном электрическом поле испускание электронов, наблюдая свечение стекла под их воздействием, и описал это явление» (32).
Последующие достижения, которые привели к появлению огромного класса вакуумных электронных приборов: электронных ламп различных типов, сканирующих и просвечивающих электронных микроскопов, электронно-лучевых трубок и пр., а именно управляющие сетки, магнитные линзы, флуоресцентные экраны, растровые электронные зонды, корректоры аберраций и т. д., – несомненно, потребовали высочайшего инженерного искусства и научной прозорливости, но вряд ли их можно назвать фундаментальными физическими открытиями.
Первые промышленные электронные микроскопы были разработаны фирмой Siemens по заказу концерна «Farben Industrie» в 1930-х годах (М. Кнолль и Э. Руска), а Нобелевскими лауреатами по физике за создание электронных микроскопов стали Э. Руска, Г. Биннинг и Г. Рорер, ни много ни мало, в 1986 г.! Нужно ли говорить, что в своей Нобелевской лекции никто из них и не вспомнил, что соответствующее принципиальное открытие и первое электронное изображение получил Никола Тесла почти на 100 лет раньше их нобелевского банкета.
1892 г. В той же лекции, поместив внутрь лампы (Фото 26, а) рубиновую каплю, Тесла продемонстрировал опыт, который можно трактовать как демонстрацию лазера.
В целом во время плавки были замечены великолепные световые эффекты, о которых трудно дать адекватное представление. Рисунок … должен проиллюстрировать эффект, наблюдавшийся с рубиновой каплей. Сначала можно наблюдать узкий столб белого света, который проецируется на верхнюю часть колбы, где он образовывает неровно очерченное светящееся пятно. Когда кончик рубина оплавляется, свечение становится очень мощным; но поскольку атомы испущены с намного большей скоростью с поверхности капли, вскоре стекло нагревается и «устает», и теперь светится только кромка пятна. Таким образом формируется очень яркая и четко очерченная линия, соответствующая внешнему контуру капли, которая медленно расширяется по верхней части колбы по мере того, как капля растет. Когда эта масса начинает кипеть, образуются пузырьки и мелкие пустоты, которые вызывают на поверхности колбы темные пятна.
Никола Тесла, лекция в Лондонском Королевском научном обществе, 1892 г.
Удивительно, но, по сути, идея о возможном существовании явления вынужденного излучения, которое лежит в основе работы лазеров, вскользь высказана Теслой еще в предыдущей лекции 1891 г. Приведем этот отрывок, где Тесла размышляет о производстве мощного практичного источника света:
Но мощные электростатические эффекты – непременное условие производства света так, как показывает теория…электромагнитные волны, длина которых во много раз больше длины световых волн и которые вырабатываются посредством резкого разряда конденсатора, использовать, кажется, нельзя… Мы не можем при помощи таких волн воздействовать на статические заряды молекул или атомов газов и заставить их вибрировать и излучать свет. Длинные поперечные волны, очевидно, не могут дать нужный эффект, тогда как крайне малые электромагнитные возмущения могут проходить мили в воздухе. Такие невидимые волны, если только они не имеют длину волн света, не могут, как кажется, возбуждать световое излучение в трубке Гейсслера, а световые эффекты, которые порождаются индукцией в трубке, лишенной электродов, я склонен считать имеющими электростатическую природу.
Никола Тесла, лекция для сотрудников AIEE в Колумбийском университете, 1891 г.
Дальше в лекции Тесла рассуждает о том, что если на рубиновую каплю «подавать энергию, которая волнообразно изменяется в соответствии с определенным законом», то рубин будет испускать, помимо «невидимых волн разных длин», видимые «волны вполне определенного характера», которые «не существуют при постоянной энергии, и всё же они помогают расшатать и ослабить структуру (Материала. – К.)», после чего «рубиновая капля будет излучать соответственно меньше видимых и больше невидимых волн, чем раньше». Это место в лекции почему-то буквально все исследователи совершенно неверно истолковывают, говоря о том, что Тесла имел в виду еще не открытые рентгеновские лучи. На самом деле здесь, наоборот, явно сказано о видимых волнах «с особыми свойствами», и из контекста можно допустить, что Тесла имеет в виду когерентные световые волны, которые как раз и генерируются лазером после накачки рабочего тела энергией – «не существуют при постоянной энергии»! Напомним, это сказано в 1892 году, когда даже подходящей терминологии не существовало!
Марк Сейфер (Marc J. Seifer) в своей работе «Никола Тесла: история лазера и лучевого оружия» собрал воедино отрывки из более чем 50 первоисточников и утверждает, что уже в те годы Тесла наглядно продемонстрировал и дал исчерпывающее объяснение работы двух типов излучателей, являющихся основой соответственно рубинового и газоразрядного лазеров, за 60 лет до их официального изобретения (7). Однако, по мнению автора настоящей книги, этот вопрос требует дополнительного изучения. Последующие разработки Теслы отличались от современных хотя бы тем, что позволяли преобразовывать и концентрировать в виде луча сотни киловатт электрической мощности, как в импульсном, так и в постоянном режиме (33). Это воистину оружие «звездных войн» недостижимо и по сей день, и, конечно же, даже постановка такой задачи вызовет глубокий скепсис у академической науки.
Я вполне согласен с этими сомневающимися и, вероятно, более пессимистичен в этом отношении, чем кто-либо еще, я говорю это из многолетнего опыта. Лучи необходимой энергии не могут быть произведены, и потом, опять же, их интенсивность уменьшается с квадратом расстояния. Но тот агент, который я использую, позволит передавать в далекую точку в миллиарды раз больше энергии, чем это возможно посредством луча любого вида.
Никола Тесла, «Тесла о развитии энергетики и чудесах будущего», 1934 (34)
Конечно, приведенного выше описания недостаточно для того, чтобы назвать Теслу изобретателем лазера, хотя, как мы видим, над идеей генерации и усиления света под воздействием различных источников он уже размышлял. Все основные элементы лазеров были им продемонстрированы в тех опытах – рабочее тело, источник накачки и даже простейшие оптические резонаторы. Что именно привело в вышеописанном эксперименте к формированию столба света с малым углом расходимости, можно только предполагать. Не исключено, учитывая, что рубин предварительно оплавлялся в этой же лампе, что во время плавки и остывания под влиянием мощного электрического поля, или по иным причинам, оптическая ось рубиновой капли (рубин – анизотропный кристалл) была установлена вдоль силовых линий поля, что в дальнейшем и привело к усилению света, распространяющегося параллельно этой оси в направлении верхней части колбы. В этом случае в качестве зеркал, формирующих оптический резонатор, могла выступить поверхность самого кристалла, так как внутреннее отражение от поверхности рубина достаточно велико (показатель преломления рубина – 1,77). Этот вопрос требует дополнительных исследований.
Заметим, что согласно общепринятой истории науки теоретически явление вынужденного излучения предсказано А. Эйнштейном в 1916 году, а экспериментально применимые методы получения вынужденного излучения и усиления света были разработаны только в 1950-х годах, за что в 1964 г. было раздадено некоторое количество Нобелевских премий (Ч. Х. Таунс, Н. Г. Басов, А. М. Прохоров). Первый мазер был создан в 1954 году, а первый лазер – в 1960-м, и это был именно рубиновый лазер.
1892 г. В ходе все той же лекции в Королевском обществе Великобритании и опытов с вышеописанной колбой Тесла поместил в центр лампы и исследовал свойства электрода из карборунда (карбид кремния), который является полупроводником.
Вне всякого сомнения, карборундовая лампа – изобретение именно Теслы. В то время этот материал только-только появился, его получил Е. Г. Ачесон из Пенсильвании, который и предоставил его Тесле, а запатентовал только год спустя, в 1893-м. Сам Ачесон изобрел карборунд для дешевой замены алмазного порошка, применяемого для шлифовки драгоценных камней. В лекции Тесла говорит о том, что еще не успел толком исследовать свойства этого нового материала, но все-таки уже обратил внимание на некоторые отличительные свойства.
Как следует из лекции, главным направлением исследований было изучение способности карборунда к свечению под воздействием электричества. Самое интересное, что, сделав напыление карборунда на металлический электрод, Тесла получил ни много ни мало, а настоящий… светодиод. Более того, он сразу заметил необычное свечение образованной пленки и отметил, что это свечение не является фосфоресцентным, а имеет какую-то другую природу, и часть лекции размышляет о причинах свечения материалов вообще и, в частности, может ли светиться «относительно прохладная поверхность».
Эта часть лекции довольно скупа, напомним, что Тесла, по его словам, получил карборунд в свое распоряжение всего лишь несколько недель назад и не торопился с выводами. Тем не менее анализ всей лекции целиком позволяет довольно уверенно восстановить ход проделанных экспериментов.
Получив карборунд в виде порошка и отдельных очень мелких кристаллов, Тесла некоторое время потратил на изготовление электродных головок из этого материала (описывается в лекции). На заключительном этапе процесса «головка сильно накаляется» или даже оплавляется. То, что Тесла плавил карборунд, не должно удивлять – его лампа могла почти мгновенно испарять даже оксид циркония и алмазы – одни из наиболее тугоплавких веществ в мире.
Испаряя карборунд, Тесла заметил, что «он нисколько не затемняет колбу, его полезно было бы использовать для покрытия нитей накаливания в обычных лампах». Очевидно, что в этих опытах уносившийся с электрода карборунд оседал в т. ч. и на подводящем ток электроде лампы (Фото 26).
Некоторые эффекты, которые я не наблюдал раньше, полученные при первых опытах с карборундом, я приписывал фосфоресценции, но в последующих экспериментах выяснилось, что он лишен этого свойства. Кристаллы обладают интересным качеством. В лампе с одним электродом в форме небольшого металлического диска, к примеру, при определенной степени разрежения электрод покрылся молочной дымкой, которая отделена темным промежутком от свечения, наполняющего лампу. Когда металлический диск покрыт кристаллами карборунда, пленка гораздо более интенсивная и снежно-белая… Я провел ряд опытов с полученными кристаллами в основном потому, что было бы интересно обнаружить их способность к фосфоресценции по причине их проводимости. Я не смог получить отчетливой фосфоресценции, но должен сказать, что нельзя делать окончательных выводов до тех пор, пока не будут поставлены дальнейшие опыты.
Никола Тесла, лекция в Лондонском Королевском научном обществе, 1892 г.
По всей видимости, на тот момент Тесла приписал замеченное им свечение контакта металл-карборунд (металл-полупроводник) странному поведению металла, ибо предыдущие четыре крупных абзаца с некоторым недоумением размышляет над тем, как это может быть, ведь «как известно, проводники не фосфоресцируют», да еще странным «мертвенно-бледным», холодным светом:
Допустим, в уставшей лампе, под молекулярной бомбардировкой, часть металлического предмета или другого проводника представляется сильно светящейся, но в то же время оказывается, что она остаётся достаточно холодной, можно ли это свечение назвать фосфоресценцией?
Никола Тесла, лекция в Лондонском Королевском научном обществе, 1892 г.
По современным понятиям, контакт металл-карборунд действительно не фосфоресцирует, а свечение вызывается рекомбинацией носителей заряда различных типов в месте контакта. Строгие ученые, вероятно, сразу скажут, что назвать Теслу первооткрывателем этого явления, столь известного в технике, было бы преувеличением.
Что ж, посмотрим, кто у нас считается первооткрывателем свечения на контакте металл-полупроводник. Оказывается, британский экспериментатор Генри Раунд из лаборатории Маркони. В 1907 г. Раунд «впервые» открыл и упомянул люминесценцию, обнаруженную им при изучении прохождения тока в паре металл – карбид кремния (карборунд)!
Дальнейшая история полупроводниковой техники на длительное время тоже связана с карборундом. В 1922 г. талантливейший самоучка Олег Лосев в Нижегородской радиолаборатории обнаружил в месте контакта металл-карбид кремния «холодное свечение» и описал явление, которое в дальнейшем получило название электролюминесценции (в то время понятия «полупроводниковый переход» ещё не существовало). Мало того, Лосев установил тождественность обнаруженного им свечения свечению, которое возникает при бомбардировке карборунда в разрядной трубке (35), т. е., по сути, прямо повторил опыт Теслы.
В 1920-х гг. Олег Лосев настолько продвинул полупроводниковые приборы, что далеко обошел даже «телефункен» и американцев. Загадочное свечение карборунда за рубежом долгое время называли «Losev light». А вот почему Советский Союз не стал лидером в области полупроводниковой техники, а первые советские светодиоды (на основе карбида кремния, кстати) появились только в 1970-х годах, мы разберем позже.
Скажем только, что Нобелевская премия по физике за изобретение особо чудесных светодиодов была выдана группе американо-японских товарищей (И. Акасаки, Х. Амано, С. Накамура) в 2014 году.
1893 г. В Филадельфийской лекции Тесла высказал важнейшую мысль, которую нельзя истолковать иначе, как утверждение о квантовании заряда:
Атом настолько мал, что если бы он заряжался от вступления в контакт с наэлектризованным телом и заряд предположительно следовал бы тому же закону, как в случае с телами измеримых размеров, он должен сохранять объем электричества, который в полной мере может учесть эти силы и колоссальную скорость вибрации. Но атом ведет себя в этом отношении своеобразно – он всегда берет один и тот же «заряд».
Никола Тесла, «О свете и других высокочастотных явлениях», 1893 г.
Сама мысль о существовании некоей минимальной единицы электрического заряда, насколько можно судить, по состоянию на 1893 год уже не являлась совсем новой, но в данном случае интересно другое.
Как известно, Нобелевскую премию по физике «за работы по определению элементарного электрического заряда и фотоэлектрическому эффекту» получил в 1923 г. американский физик Роберт Милликен. Не обсуждая пока научную ценность его работ, скажем только, что в 1891 г. Милликен, в то время бывший выпускником Колумбийского колледжа, лично присутствовал на лекции Теслы и много лет спустя честно написал:
Немалая часть моей исследовательской работы была проделана с помощью принципов, о которых я узнал в тот вечер.
Р. Милликен, 1931 (7)
Впрочем, в своей Нобелевской лекции Р. Милликен не был столь откровенен и не счел нужным упомянуть имя Николы Теслы. Как будет показано позже, эта история имеет важное продолжение.
1889–1893 гг. Тесла одним из первых исследовал явление электромагнитных волн, существование которых установил Генрих Герц, опубликовавший основополагающие работы в 1887 и 1888 годах. Однако, в то время когда Герц все еще генерировал электромагнитные колебания с помощью простейшего искрового промежутка, Тесла создал самый настоящий волновой осциллятор с возможностью генерации непрерывных и затухающих колебаний, а также настройки в широком диапазоне частот и мощностей – основу любого радиопередатчика, и первым выдвинул радикально новые идеи о беспроводной передаче сообщений и энергии в промышленных целях. Нужно сказать, что Тесла совершенно иначе объяснял природу электромагнитных волн и не согласился с результатами опытов Герца.
С тех пор, как была анонсирована электромагнитная теория Максвелла, научные исследователи всего мира устремились к её экспериментальной проверке. Они были убеждены, что это будет сделано, и жили в атмосфере нетерпеливого ожидания, чрезвычайно благоприятной для восприятия каких-либо доказательств этого. Неудивительно, что публикация результатов д-ра Генриха Герца вызвала особый трепет, какой я едва ли испытывал раньше. В то время я был посреди неотложных работ в связи с коммерческим внедрением моей системы передачи энергии (Имеется в виду работа на Вестингауза. – К.), но тем не менее поймал огонь энтузиазма и сгорал от желания узреть чудо своими глазами. Соответственно, как только я освободился от настоятельных обязательств, то возобновил исследовательскую работу в моей лаборатории на Гранд-стрит, Нью-Йорк. Я начал, параллельно с генераторами переменного тока высокой частоты, конструирование нескольких видов устройств с целью изучения поля, которое открыл д-р Герц… Во второй половине 1891 года я уже так далеко продвинулся в развитии этого нового принципа, что получил в свое распоряжение средства, значительно превосходящие то, что было у немецкого физика… Для того чтобы последовательно обосновать мои сомнения, я прошел весь путь [проделанный Герцем] еще раз, очень осторожно, с этими улучшенными приборами. Сходные явления были отмечены, значительно увеличены по интенсивности, но они допускали другое и более правдоподобное объяснение. Я считал это настолько важным, что в 1892 году поехал в Бонн, Германия, чтобы обсудить с доктором Герцем мои наблюдения. Он казался разочарованным до такой степени, что я уже пожалел о моей поездке и расстался с ним с сожалением. В последующие годы я провел многочисленные эксперименты с той же целью, но результаты были неизменно отрицательными. В 1900 году, однако, после того как я развил беспроводной передатчик, который позволил мне получить электромагнитную активность во много миллионов лошадиных сил, я сделал последнюю отчаянную попытку доказать, что возмущения, исходящие от осциллятора, были колебания эфира сродни световым, но опять-таки встретился с полным провалом. На протяжении более восемнадцати лет я читал трактаты, отчеты о научных трудах и статьи по телеграфии посредством волн Герца, чтобы держать себя в курсе, но они всегда оставляли впечатление как произведения художественной литературы.
История науки показывает, что теории являются скоропортящимися. С каждой новой раскрытой истиной мы получаем более глубокое понимание природы, и наши представления и взгляды изменяются. Доктор Герц не обнаружил новый принцип. Он просто поддержал фактами гипотезу, которая была давно сформулирована. Это был вполне хорошо установленный факт, что контур, по которому проходит периодический ток, излучает некий вид пространственных волн, но мы были в неведении относительно их характера. Он, очевидно, дал экспериментальное доказательство того, что это были поперечные колебания в эфире. Большинство людей смотрит на это как на великое достижение. На мой взгляд кажется, что его бессмертная заслуга не столько в этом, сколько в фокусировке внимания исследователей на процессах, происходящих в окружающей среде. Теория волн Герца своей увлекательностью захватила воображение, сдерживает творческие усилия в беспроводном искусстве и затормозила его на двадцать пять лет. Но, с другой стороны, невозможно переоценить благотворное воздействие мощного стимула, который она дала во многих направлениях.
Никола Тесла, «The True Wireless», 1919 г. (30)
Нельзя не заметить особое ехидство, с которым Тесла в последующем отзывался о «так называемых волнах Герца», «если они существуют». Этот вопрос важен для понимания дальнейших работ Теслы, и мы к нему еще вернемся.
1893 г. Собственно, из предыдущего абзаца логически происходит вопрос о приоритетах в изобретении радиосвязи. Строго говоря, изобретателем радио, пожалуй, следует считать Генриха Герца, и в Германии так и считают до сих пор. Но Герц не оценил перспективы практического использования электромагнитных волн, это сделали другие. Изобретение А. С. Попова датируется 1895 годом и, строго говоря, является усовершенствованным прибором Герца, т. е. «разрядоотметчиком», а не радиоприемником в современном понимании, при этом в своих опытах Попов использовал вибратор Герца, усовершенствованный когерер Лоджа и заземленную мачтовую антенну Теслы.
Употребление мачты на станции отправления и на станции приема для передачи сигналов с помощью электрических колебаний не было, впрочем, новостью: в 1893 г. в Америке была сделана подобная попытка передачи сигналов известным электротехником Николаем Тесла.
Александр Степанович Попов, 1899 г. (25)
Кроме опытов Герца, А. С. Попов первым в России воспроизвел и опыты с резонансным трансформатором Теслы (25). Напомним, что А. С. Попов познакомился с тесловской аппаратурой на чикагской выставке в 1893 г., где Тесла лично продемонстрировал свои беспроводные устройства. К сожалению, эта лекция Теслы, прочитанная 25.08.1893 г., не была опубликована и не сохранилась, и о её содержании известно только по отчетам журналистов того времени и свидетельствам участников. Однако мало сомнений, что в то время как множество ученых по всему миру повторяли опыты Герца с искровым промежутком (Э. Бранли, О. Лодж, У. Прис, А. Пуанкаре, В. Бьеркнесс, Я. О. Наркевич-Иодко, А. С. Попов, Г. Маркони, К. Ф. Браун, Э. Резерфорд, Р. Фесенден и др.), Тесла уже в тех самых первых показах использовал для беспроводной передачи и приема электромагнитных колебаний резонансным образом связанные и взаимонастроенные колебательные контуры с точно известной и настраиваемой длиной волны. В целом же основные идеи по беспроводной передаче различимых сигналов и энергии были сформулированы Теслой еще в лекциях 1891–1893 гг.
Похоже, что даже для электромагнитных волн Герца именно Тесла первым установил соотношение между длиной антенны и длиной излучаемой волны (9), обнаружил различие поля излучения в ближней и волновой зонах (По крайней мере, автор книги так понимает статью (30) с объяснениями и рисунками Теслы по этому поводу. – К.).
Что касается Маркони, то он подал заявку на свое «усовершенствование» приборов Герца в Британии в 1896 году. Позиция Теслы во время судебных разбирательств с Маркони состояла в том, что Маркони просто жульничал – получив патенты на усовершенствованные приборы Герца, на практике использовал аппаратуру Теслы, причем даже не понимая до конца принципов ее работы.
Хорошо разрекламированный эксперт (Маркони. – К.) выдал заявление в 1899 году, что мой аппарат не работал и что пройдет 200 лет, прежде чем сообщение промелькнет через Атлантику, и даже принял флегматично мои поздравления в связи с предположительной чрезвычайной ловкостью (Имеется в виду передача сигнала через Атлантику, якобы проведенная Маркони в конце 1901 г. – К.). Но последующее изучение записей показало, что мои устройства тайно использовали все это время, и с тех пор, как я узнал об этом, я относился к этим методам Борджиа-Медичи с презрением, которого они заслуживают перед всеми непредвзятыми людьми. Оптовое присвоение моих изобретений было, однако, не всегда без смешной стороны. В качестве примера к пункту я могу упомянуть мой трансформатор колебаний с воздушным зазором. Он был, в свою очередь, заменен на угольную дугу, гасящую разрыв в атмосфере водорода, аргона или гелия, с помощью механического прерывания с противоположно вращающимися элементами, ртутный прерыватель или какие-то типы вакуумных колб, и с помощью таких «объездных путей» много новых «систем» было создано. Я имею в виду это, конечно, без малейшей неприязни, давайте продвигаться вперед всеми средствами. Но я не могу отделаться от мысли, насколько лучше было бы, если бы изобретательные люди, которые породили эти «системы», изобрели что-то свое, а не в зависимости от меня вообще.
Никола Тесла, «The True Wireless», 1919 г. (30)
Фото 27
Фото 28. Письмо Николы Теслы Президенту США Теодору Рузвельту, Roosevelt, Theodore. MNT, CXLIV, 161–162 source (© Nikola Tesla Museum, Belgrade). Публикуется впервые с разрешения и по договору с Музеем Теслы
Тесла же первым публично продемонстрировал волновой радиопередатчик еще в 1893 году, первым начал использовать настраиваемые резонансные цепи в приемнике и передатчике (1893), а также вакуумную лампу для детектирования электромагнитных возмущений (1892), первым начал применять цепь антенна-земля (1889), первым разработал и применил принципы амплитудной модуляции непрерывного сигнала (не позднее 1899) (36), а также частотного разделения и кодирования каналов комбинацией частот или импульсов (не позднее 1899, там же), а также первым ввел усовершенствованный метод приёма незатухающих колебаний, так называемый метод биений, получивший широкое применение в радиотехнике под названием «гетеродиный приём». Таким образом, даже на момент опытов с «беспроводной телеграфией» Попова и Маркони в 1895–1897 годах Тесла опережал их на целое поколение радиоприборов.
В этом смысле Никола Тесла является единственным «отцом» если не радио, то радиотехники, ибо именно его фундаментальные разработки определили пути развития радиосвязи на несколько последующих десятилетий.
Что касается работ К. Ф. Брауна, который вместе с Маркони поделил Нобелевскую премию по физике 1909 г. «за развитие беспроводной телеграфии», то часто встречающиеся в литературе утверждения вроде того, что «в 1900 г. немецкий радиотехник Фердинанд Браун создал новое схемное решение, которое способствовало развитию дальней радиосвязи», с технической точки зрения попросту смехотворны, достаточно взглянуть на эти схемы и сравнить с работами Теслы.
На взгляд автора книги, заслугой Брауна является создание кристаллического детектора, а также нечто вроде фазированной антенной решетки для передачи направленного сигнала, но оба этих вопроса еще требуют изучения, так как значительная часть первоисточников по Тесле, в отличие от работ других ученых, все еще малодоступна.
Президенту,
Белый дом, Вашингтон, округ Колумбия
Ваше превосходительство!
Я являюсь гражданином Соединенных Штатов и изобретателем некоторых устройств, известных как «катушки Тесла, трансформаторы-осцилляторы» и системы беспроводной передачи энергии. Эти изобретения, патенты на которые были выданы мне в этой, а также в других цивилизованных странах, позволяют эксперту создавать электрические колебания любого желаемого шага и практически неограниченной интенсивности, а также экономически эффективно передавать электрическую энергию без проводов на самые большие расстояния по морям и континентам…
Ничего нет в этих изобретениях, со всеми их существенными признаками, что бы не было присвоено другими, и поскольку теперь удивительная сила моих аппаратов смело используется мне во вред, я вынужден смиренно, но решительно протестовать против предполагаемого использования имени и авторитета Вашего превосходительства в связи с отправкой беспроводного сообщения, объявленного в журналах (Имеется в виду передача сигнала через Атлантику, якобы проведенная Маркони. – К.), поскольку, ввиду вашей персоны, это может создать неправильное впечатление во всем мире, что может навредить моим материальным интересам и временно подорвать мою научную репутацию оригинального исследователя.
Никола Тесла, письмо Теодору Рузвельту, 15 января 1903 г.
Доказывать чьи-либо приоритеты в области радиотехники и радиосвязи не входит в задачи этой книги, это совершенно избитая тема, которой посвящены сотни монографий и судебных решений. Причем автору книги на данный момент неизвестны патентные споры, которые безвозвратно бы проиграл Тесла где бы то ни было. Целью настоящей главы является указание на однобокость в освещении истории науки, ущемляющую не только имя Николы Теслы, но и наше право на развитие. Например, наиболее зрелые научные идеи Теслы в области беспроводной передачи информации и энергии не поняты и не осознаны до сих пор, и говорить о том, что эти идеи – всего лишь сказка и вымысел, уже не приходится.
Кроме того, доказывать приоритеты в области радиотехники бессмысленно еще по одной причине, главной. На сегодняшний день известны документы и материалы, касающиеся результатов работы и экспериментов, проведенных Теслой в Колорадо-Спрингс в 1899 году. Воспроизведение этих работ сегодня и экспериментальное доказательство правоты Теслы будет означать одно – Никола Тесла обогнал развитие технологий и физики радиосвязи более чем на 120 лет.
«Радио. Я знаю, что я его отец, но оно мне не нравится», – сказал он однажды. «Совершенно не нравится. Это досадное неудобство. Я никогда не слушаю его. Радио отвлекает внимание и мешает сосредоточиться. Слишком многое отвлекает в этой жизни от качественных размышлений, а именно качество мышления, а не количество, имеет значение».
«Никола Тесла, отец радио, который отвергал его», 8 января 1943 г. (37)
Что касается Нобелевской премии Маркони и Брауна, то мы еще скажем про нее отдельно чуть позже.
1893–1900 гг. Тесла некоторое время работал над системой «визуальной телеграфии», в которой, в частности, использовал чувствительные к свету полупроводниковые селеновые элементы, и по обыкновению опережал на несколько лет немецкого физика доктора А. Корна (7), который считается разработчиком технологии фотоэлектрического сканирования изображения (факс). Сам Артур Корн охотно признавал в письме Тесле, «как полезны мне были тесловские токи на первых стадиях фототелеграфа» (25).
Однако идеи Теслы были далеки от «примитивной», как он говорил, передачи изображений путем сканирования тем или иным способом, преобразования сигнала и передачи его по проводам (38). Еще в лекции 1893 г. Тесла сформулировал идею телевидения, которое должно функционировать подобно человеческому глазу, а в последующие годы работал над системой «беспроводной фотографии».
В 1893 году, когда я занимался некоторыми исследованиями, я убедился в том, что определенный образ, сформировавшийся мысленно, должен рефлекторно производить соответствующий образ на сетчатке, который, возможно, может быть прочитан подходящим аппаратом. Это привело меня к моей телевизионной системе, о которой я объявил в то время. Моя идея заключалась в том, чтобы использовать искусственную сетчатку, получающую изображение видимого объекта, «зрительный нерв», и другую такую же сетчатку на месте воспроизведения.
Эти две сетчатки должны были быть устроены до некоторой степени подобно шахматной доске, со множеством отдельных небольших участков, и так называемый зрительный нерв был не более чем частью земли. Мое изобретение позволяет мне одновременно и без какого-либо вмешательства передавать сотни тысяч различных импульсов через землю, как если бы у меня было множество отдельных проводов. Я не рассматривал использование каких-либо движущихся частей – сканирующего устройства или катодного луча, который является своего рода движущимся устройством, использование которого я предложил в одной из моих лекций того периода.
Никола Тесла, «Новый источник энергии и фотографирование мыслей», 1933 (39)
Постоянные размышления на эту тему привели меня к созданию аппарата, моментально передающего изображение без применения каких-либо подвижных элементов, и к 1900 году я уже решил три из стоявших передо мной задач, а именно: индивидуализировать и обособить очень большое количество каналов, или «нервов»; передать на приемное устройство достаточное количество энергии и сделать зрительное восприятие движущихся образов независимым от расстояния.
Никола Тесла, «Мировая система беспроводной передачи энергии», 1927 (13)
Некоторые высказывания наводят на мысль, что под беспроводной фотографией Тесла понимал не только беспроводную передачу уже зафиксированного изображения-фотографии, как это сходу представляется сегодня, но и непосредственно сам процесс получения и беспроводного переноса изображения, включая информацию о форме (40). Собственно, и поныне термин «фотография» имеет два значения – как процесс и как конечный результат, который более правильно называть фотоснимком. Задача не была решена в первую очередь потому, что в своих идеях Тесла слишком обогнал технологический уровень своего времени – не было ни материалов, ни конструкторско-технологических возможностей для производства сложной аппаратуры.
Я сделал открытия много лет назад, которые дают мне все основания полагать, что в телевидении будущего все сложные части будут расположены на передающей или центральной станции, и все, что абоненту будет необходимо для получения воспроизводимого изображения в своем доме или офисе, – это практически ничего, кроме экрана, связанного с соответствующей волной переключателем станций.
Никола Тесла, 1930 г. (41)
1893 г. В Филадельфийской лекции Тесла четко формулирует гипотезу о Земле как конденсаторе очень большой ёмкости, состоящем из изолированного атмосферой электрически заряженного тела и наружной проводящей среды «в свободном пространстве за пределами атмосферы». Подробно описал постановку экспериментов, которыми предполагал проверить эту гипотезу. Более того, в 1899 году в Колорадо Тесла поставил соответствующие эксперименты и в 1900 г. опубликовал результаты исследований (9). Однако сегодня считается, что первым предположение о существовании проводящего слоя в верхних слоях атмосферы высказал английский физик Оливер Хэвисайд в 1902 году, и тогда же независимо от него американец Артур Кеннели. Этот слой назвали слоем Хэвисайда – Кеннели, а затем ионосферой. Но совершенно очевидно, что оба автора развивали идею именно Теслы хотя бы потому, что О. Хэвисайд лично присутствовал на Лондонской лекции Теслы 1892 г. и был знаком с его работами (7), а А. Кеннели был одним из ближайших помощников Эдисона в «войне токов» с Вестингаузом. Собственно, Кеннели и был одним из людей, которые занимались демонстрацией потрясающих возможностей электрического стула и страшной опасности переменного тока.
Представление о Земле как о конденсаторе было в дальнейшем признано наукой, см., например, «Фейнмановские лекции» по физике. Что касается ионосферы, то Тесла высказывал возражения против принятых в то время представлений о слое Хэвисайда. И надо полагать, небеспочвенные, ибо, насколько можно судить, до сих пор научные представления о свойствах ионосферы и даже электрических свойствах атмосферы постоянно пересматриваются.
Впрочем, пересматривай – не пересматривай, а Нобелевскую премию по физике за «исследования физики верхних слоев атмосферы» и изучение ионосферы все равно уже выдали еще в 1947 г. некоему американцу Э. Эплтону.
Доктору А. Е. Кеннелли,
Гарвардский университет
Мой дорогой доктор Кеннелли!
Активная работа помешала мне написать раньше, чтобы рассказать вам, как я был рад снова вас видеть, а также выразить благодарность за добрые замечания на заседании Института.
С тех пор, как вы посетили мою лабораторию на Лонг-Айленде много лет назад, у меня были угрызения совести за то, что я отказал вам сфотографировать её. В порядке искупления я посылаю вам под отдельной обложкой фотографию моей «несбыточной мечты». Это должен был быть передатчик, в котором все сильно заряженные элементы расположены на идеально закругленных поверхностях с большим радиусом кривизны; что, с небольшим затуханием, приводит к огромным потенциалам и токам, достаточно сильным, чтобы «раскачать» весь земной шар.
Я надеюсь, что когда вы в следующий раз приедете в город, вы предоставите мне удовольствие позвонить.
С благодарностью, искренне Ваш Никола Тесла
31 мая 1917 г.
Фото 29. Письмо Николы Теслы Артуру Кеннели, Kennelly, Artur. MNT, CXIV, 592 source (© Nikola Tesla Museum, Belgrade). Публикуется впервые с разрешения и по договору с Музеем Теслы
1895 г. Вильгельм Рентген в экспериментах с катодно-лучевой трубкой открывает новое излучение с особыми свойствами, названное им «Х-лучами». В конце декабря Рентген опубликовал научное сообщение «О новом типе лучей», где изложил основные тезисы относительно их характера. Однако более или менее достоверно известно, что Никола Тесла обнаружил существование этих лучей еще до Рентгена.
Надо сказать, что сам Тесла не оспаривал первенство открытия и, по-видимому, одним из первых назвал Х-лучи «рентгеновским излучением». Свою позицию он предельно корректно изложил в лекции 1897 г., прочитанной в Нью-Йоркской академии наук. По Тесле, он изучал актиническое действие (способность излучения оказывать фотографическое действие на светочувствительный материал) трубок Крукса и других типов вакуумных трубок с конца 1894 г. и тогда же заметил «непонятные дефекты и отметины» на пластинках, которые не подвергались облучению непосредственно в опытах, а просто складировались в углу лаборатории в металлических непрозрачных контейнерах.
Именно тогда, когда мое внимание было поглощено этими необычными свойствами трубок и пластин, вся моя лаборатория и почти всё, что там находилось, было разрушено; и несколько следующих месяцев восстановительных работ заставили меня забыть о моих планах. Едва этот труд был закончен, и я вновь приступил к работе над своими идеями, как моего слуха достигли вести о достижениях Рентгена. Внезапно мне открылась истина. Я поспешил воспроизвести эти опыты, информация о которых была неполной, и тут я сам увидел это чудо… Рассказ об этих событиях мог быть неверно истолкован в то время, когда Рентген объявил о своём открытии, поэтому я молчал… Теперь же я не испытываю страха от того, что кто-то не так поймет меня, и излагаю мой нелегкий, но побуждающий к действию опыт для того, чтобы те, кто с легкостью и поверхностно писал об истории этого нового направления в науке, смогли более тщательно подойти к его оценке.
Никола Тесла, лекция в Нью-Йоркской академии наук, 1897 г. (42)
Надо сказать, на первенство открытия Х-лучей серьезно претендовал Филип Ленард и еще несколько человек, но, как уже было сказано, Тесла, знакомый с работами Ленарда, отдал формальный приоритет все-таки Рентгену.
Ф. Ленард, доктор наук, Ординарный профессор, директор Физического института, очень благодарен Вам за отправку великолепных снимков – сожалеет только о том, что до сих пор не получил литературу, о которой он просил, что же происходит там, за кулисами?
– Но тем не менее еще раз благодарит Вас за приятный и чудесный сюрприз *) (доступный нам здесь!).
Искренне преданный Вам, Ф. Ленард
30 августа 1901
Фото 30 Визитная карточка Ф. Ленарда с надписью на ней, Philipp Lenard. MNT, CXIX, 190 source (© Nikola Tesla Museum, Belgrade). Публикуется впервые с разрешения и по договору с Музеем Теслы
Фото 31. Письмо В. К. Рентгена Николе Тесле. Wilhelm Rontgen. MNT, CXLIV, 152 source (© Nikola Tesla Museum, Belgrade).
Дорогой сэр!
Вы удивили меня чрезвычайно великолепными фотографиями чудесных разрядов, и я говорю вам большое спасибо за это. Если бы только я знал, как вы делаете такие вещи!
С выражением особого уважения я остаюсь Вам преданным.
В. К. Рентген
1901 г.
Работы Теслы внесли весомый вклад в понимание природы рентгеновских лучей и совершенствование способов их получения. Например, Тесла обнаружил эффект отражения рентгеновских лучей, опровергнув тем самым один из тезисов Рентгена, правильно установил место возникновения излучения как место столкновения катодного потока с веществом (Рентген первоначально считал местом возникновения излучения светящееся пятно на колбе, что есть частный случай более общей закономерности, установленной Теслой), и первым в мире опубликовал сообщение о крайне опасном воздействии Х-лучей на живой организм (43).
В 1901 году за свое открытие В. Рентген получил первую в мире Нобелевскую премию по физике и охотно признавал, что «применение трансформатора Теслы оказало мне неоценимую услугу» (25). Сам Рентген, насколько можно понять, не разрабатывал аппаратуру и сделал свое открытие едва ли не случайно с помощью разрядной трубки, которую дал ему Ф. Ленард. Аппаратура же Теслы уже в то время позволяла делать рентгеновские снимки с расстояния в 40 футов, и в этом смысле последующие промышленные «рентгеновские аппараты» более правильно было бы называть «тесловскими аппаратами».
Всего же за работы, напрямую связанные с рентгеновским излучением, Нобелевские премии присуждались еще 12 раз. Обстоятельства некоторых из этих работ и награждений представляются весьма любопытными.
1896–1897 гг. Тесла опубликовал как минимум 10 научных статей, посвященных исследованию природы и свойств рентгеновских лучей (43). Одним из важнейших результатов являлось обнаружение Теслой отраженного излучения и постановка экспериментов для одновременного исследования прямых и отраженных лучей, которые после отражения пропускались через коллиматор.
Оценив количество отраженных рентгеновских лучей примерно в 2 % от совокупных падающих лучей, Тесла тем не менее изготовил рефлектор в виде воронки из цинка и, поэкспериментировав с конструктивными параметрами такой системы, смог получить значительно более качественный рентгеновский отпечаток (Фото 32):
Здесь мы столь подробно излагаем результаты, полученные 120 лет назад Теслой, постольку, поскольку проблема отражения рентгеновских лучей и до сих пор остается жгучей проблемой современной физики.
Автор книги к настоящему времени не смог пока в полной мере провести удовлетворительный сравнительный анализ данных Теслы с современными представлениями в этой области, а свои собственные соображения считает себя вправе до поры не раскрывать. Тем не менее кое-что сказать представляется возможным, и это «кое-что» в некотором роде оказывается даже интереснее беспроводной передачи энергии.
Фото 32. Рентгеновский снимок справа сделан Теслой в апреле 1896 года, месяц спустя после первого (слева), с добавлением в установку цинкового отражателя: «Я избрал тот же самый объект, что был представлен в моем первом сообщении на ваших страницах, с тем чтобы дать более наглядное представление о достигнутых успехах. Легче всего будет оценить прогресс, если сообщить, что в этом опыте расстояние увеличено более чем в два раза, а время экспозиции сокращено более чем наполовину» (44)
С одной стороны, по современным понятиям рентгеновское излучение полностью определяется изменением энергетического состояния электронов и ничем иным. Здесь Тесла, сразу же связав природу возникновения рентгеновских лучей с электрическими свойствами вещества, далеко опередил в понимании физических процессов остальных ученых. Например, сам Рентген попросту считал Х-лучи продольными волнами в эфире, волновой гипотезы придерживался и Ф. Ленард. Напомним, что в 1896 г. электрон еще не был «официально открыт», это якобы сделал чуть позже Дж. Дж. Томсон, который совместно с Резерфордом открыл явление ионной проводимости газов под действием рентгеновского излучения и затем смог оценить заряд и отношение массы к заряду элементарной корпускулы, названной им «электроном». Надо сказать, некоторые научные выводы и даже формулировки Дж. Дж. Томсона «один к одному» повторяют фразы из чуть более ранних статей Николы Теслы о рентгеновских лучах. Автору книги представляется, что строгое исследование этого наблюдения могло бы стать темой для первой научной работы способного студента. Интересно, что еще в 1891 году состоялась публичная научная переписка Дж. Дж. Томсона и Николы Теслы по вопросам истолкования физики электрических разрядов в вакуумных трубках, в которой Тесла очень вежливо, но твердо указал на ошибки профессора Дж. Дж. Томсона (43). По-видимому, ошибки были учтены, ибо в последующем Дж. Дж. Томсон стал лауреатом Нобелевской премии по физике как раз с формулировкой «за исследования прохождения электричества через газы».
С другой стороны, в 1903 г. английский физик Чарльз Баркла, ученик Дж. Дж. Томсона, исследуя рассеянные, или, иными словами, вторичные рентгеновские, лучи, сделал довольно унылое и, по-видимому, ошибочное открытие, что интенсивность рассеяния увеличивается пропорционально атомному весу вещества, на котором происходит рассеяние. В совокупности с поглощающими свойствами вещества, которое также находится в определенной пропорции к порядковому номеру химического элемента, данные наблюдения привели к повсеместному использованию свинцовых экранов для защиты от рентгеновских излучений. Насколько удалось понять при беглом обзоре научных публикаций, в целом и в общем так и считается до сих пор. Современные исследования идут по пути комбинации и сплавов различных веществ, а также синтеза кристаллических структур, но добиться существенного коэффициента отражения пока не удалось. Впрочем, в 2010 г. физики из Аргонской и Брукхейвенской национальных лабораторий (США) сумели создать отражатель из алмаза, который отражает 90 % монохроматичного жесткого рентгеновского излучения определенной частоты, даже падающего под прямым углом, но официальное объяснение, скорее, подтверждает общепринятую теорию (45).
Никола Тесла же еще в 1896 г. разработал прибор для концентрации (фактически для фокусировки!) рентгеновских лучей (43), что в некотором смысле превосходит даже нынешнее состояние науки в этой области.
Некоторое представление о достижениях Теслы дает снимок (Фото 33), полученный в 1896 году.
Из других достижений стоит упомянуть, что Тесла первым получил рентгеновские снимки с помощью безэлектродной вакуумной лампы, не имеющей ни анода, ни катода. Заметил изменения в проникающей способности излучения, прошедшего сквозь препятствия, что явно соответствует изменению энергии вторичных лучей (через десяток лет Ч. Баркла, исследуя это явление, откроет т. н. характеристическое излучение, а еще через пару десятилетий А. Комптон назовет эффект рассеяния рентгеновских лучей с изменением энергии излучения своим именем). При этом монография Артура Комптона 1922 года по вторичному рентгеновскому излучению явно соотносится с серией статей Теслы 1896–1897 гг. об отраженных лучах (46).
Кроме того, Тесла первым пришел к идее того, что сегодня называется «многослойными рентгеновскими зеркалами»:
Фото 33. Рентгеновский снимок человеческой стопы в ботинке. Тесла получил это изображение в 1896 г. с помощью вакуумной трубки собственной конструкции, с расстояния в 8 футов. Document № MNT, VI/II, 122 source (© Nikola Tesla Museum, Belgrade)
Изучая свойства рассеивания в воздушной среде, я прихожу к идее повышения эффективности рефлекторов, предусмотрев не один, а несколько отдельных, наложенных друг на друга отражающих слоев, и использую тонкие листы металла, слюды или иных веществ. Эффективность слюды в качестве отражателя объясняется в первую очередь тем, что она состоит из множества наложенных один на другой слоев, каждый из которых отражает отдельно.
Никола Тесла, «Исследование рентгеновских лучей», 1896 (47)
В заключение стоит сказать, что все вышеперечисленные физики, кроме Теслы, – В. Рентген, Ф. Ленард, Дж. Дж. Томсон, Э. Резерфорд, Ч. Баркла, А. Комптон и еще несколько человек – стали в разное время Нобелевскими лауреатами, причем именно за работы по исследованию структуры вещества, катодных и рентгеновских лучей и связанных с ними эффектов.
1896 г. В серии статей о рентгеновских лучах (43) Тесла в противовес другим ученым идентифицирует излучение как поток мельчайших частиц и одновременно как волны. Это мнение основывалось на целой серии экспериментов, которые, вообще говоря, свидетельствовали больше в пользу гипотезы о материальных потоках, но Тесла, указывая на различные аргументы и доказательства, все-таки воздерживался от формулировки окончательного суждения, пока лично не исследовал все обстоятельства и доводы.
Наиболее четко гипотезу о рентгеновских лучах как корпускулярных потоках и одновременно волнах Тесла сформулировал в статье «Рентгеновские лучи или потоки» (48).
Более того, еще в Филадельфийской лекции 1893 г. он размышляет о том, как именно передается энергия: «независимыми носителями или вибрацией однородной субстанции?» – и склоняется к тому, что без независимых носителей не обойтись.
Трудно определенно сказать, были ли идеи о двойственной природе проявлений энергии принципиально новыми в то время, учитывая двухсотлетний спор между сторонниками корпускулярной и волновой теорий света и существованием различных теорий эфира, но, несомненно, они находились, что называется, на переднем крае науки, а споры «частица или волна» продолжались еще несколько десятилетий. Считается, что в общем виде концепция корпускулярно-волнового дуализма была сформулирована в 1923 г. Луи де Бройлем, а теория независимых «квантов энергии» датируется началом 1900-х гг. и принадлежит Максу Планку и Эйнштейну (все трое – за сим Нобелевские лауреаты по физике).
Уважаемый г. Тесла!
Я с радостью узнал о том, что Вы празднуете свое 75-летие и что Вы, как плодотворный пионер в области токов высокой частоты, достигли исключительного развития этой области техники. Поздравляю Вас с великим успехом всей Вашей работы.
А. Эйнштейн, 1931 г.
Внимательное изучение статей Николы Теслы по рентгеновским лучам позволяет сделать вывод, что Тесла предвосхитил возникновение классической квантовой теории, и все же это будет скорее неверным утверждением. Фундаментальные физические идеи Теслы – это нечто, в некоторой степени прямо противоположное идеям Планка и Эйнштейна. Не вдаваясь в подробности, скажем, что для любого квантово-механического явления могут существовать и альтернативные объяснения, но в цели данной книги не входит переистолкование явлений, открытых другими.
Фото 34. Письмо А. Эйнштейна, 1931 г.
Я уже выдвигал в качестве вероятного предположение, что мы имеем дело с фактическим расщеплением эфирных вихрей, из которых, согласно теории лорда Кельвина, состоят материальные частицы, или, возможно, сталкиваемся с разложением материи до некой неизвестной первичной материи, называемой в древних ведах Акаша. Эксперименты доказывают, что эта субстанция отражается иногда очень интенсивно, иногда слабо, но во всех случаях разные металлы ведут себя необычно – исследованием этого я и занимался.
Никола Тесла, «О потоках рентгеновских лучей», 1896 (49)
1896 г. Тесла является первым, кто выдвинул гипотезу о существовании нового физического явления и экспериментально исследовал так называемые космические лучи – потоки крошечных частиц внеземного происхождения, каждая из которых несет огромную энергию, потому что мчится с чрезвычайно высокой скоростью. В качестве источника космических лучей сразу же было указано Солнце – раскаленное тело с высоким электрическим зарядом, которое выбрасывает и разгоняет ливни крошечных заряженных частиц, которые «пронизывают тело словно папиросную бумагу».
Но если такие потоки существуют повсюду в окружающей среде, возникает вопрос: откуда они берутся? Ответ один – от Солнца. Исходя из этого, я делаю вывод: Солнце и в меньшей степени другие источники лучистой энергии испускают лучи, или потоки вещества, подобные тем, которые отбрасывает электрод в условиях вакуума. Сейчас это еще спорный вопрос.
Никола Тесла, «Исследование рентгеновских лучей», 1896 (47)
Тесла не только высказал предположение о существовании корпускулярного излучения Солнца и потока космических частиц, но и оценил их электрический потенциал в сотни миллионов вольт. Более того, развивал представление о том, что, сталкиваясь с Землей, эти частицы вызывают вторичные эффекты, проявляющиеся как свечение атмосферы, полярные сияния, спонтанная радиоактивность (распад материи) и т. п.
В то время идея Теслы о том, что Земля постоянно бомбардируется какими-то разрушительными космическими лучами, была совершенно не воспринята.
Они думали, что я сумасшедший в 1896 году, когда я впервые опубликовал трактат в «Electrical Review» по изучению космических лучей. В настоящее время научные журналы полны дискуссий о космических лучах, и никто не называет авторов безумцами – они получают Нобелевские премии взамен.
Никола Тесла, 1933 г. (20)
Как совершенно справедливо заметил Никола Тесла, у этой идеи было большое будущее. В 1910-х австро-американский физик Виктор Гесс с помощью аппаратуры, которая поднималась на высоту на аэростатах, совместно с другими учеными экспериментально обосновал предположение, что радиация, ионизирующая атмосферу, имеет космическое происхождение. Интересно, что именно эти эксперименты Гесса, по-видимому, ставил под сомнение Тесла, когда заявлял, что «эффекты на больших высотах имеют совершенно иной характер, не имея никакого отношения к космическим лучам» (50), (51).
Затем в 1920-х последовала целая плеяда «доказателей», среди которых опять можно назвать Артура Комптона и Роберта Милликена. Считается, что именно Р. А. Милликен ввел в науку термин «космические лучи».
О том, что космические лучи долгое время оставались таинственным явлением, свидетельствует тот факт, что Нобелевская премия за «открытие космических лучей» была присуждена В. Гессу только в 1936 г., т. е. более чем через 20 лет после его экспериментов (А. Комптон и Р. Милликен получили Нобелевские премии за другие заслуги). Вторую половину Нобелевской премии по физике за 1936 г. получил ученик Р. А. Милликена К. Д. Андерсон за открытие в космических лучах позитрона и пиона, который затем «истолковали» как мю-мезон, а затем «переистолковали» как мюон.
С этих мюонов и началась длинная комедия с открытием и истолкованием целого сонма всевозможных «элементарных» и «фундаментальных» частиц, которых до сего времени насчитывается уже более 400, посему другой Нобелевский лауреат Уиллис Лэмб говорил, что однажды он услышал, что «если когда-то открывателей элементарных частиц награждали Нобелевской премией, то теперь такое открытие должно наказываться штрафом в 10 000 долларов».
По современным данным, космические лучи – это потоки элементарных частиц и ядра атомов, движущиеся с высокими энергиями в космическом пространстве. Космические лучи на 92 % состоят из протонов, на 6 % – из ядер гелия, около 1 % составляют более тяжелые элементы, и около 1 % приходится на электроны. Таким образом, их реальная природа практически не отличается от утверждения Николы Теслы, подробно сформулированного и обоснованного еще в 1896 г. Тем не менее космические лучи и по сию пору остаются неразрешенной проблемой астрофизики и благодатной кормовой базой для исследователей.
Я горжусь этими открытиями, так как многие отрицали, что я являюсь первооткрывателем космических лучей. Я был на пятнадцать лет раньше других товарищей, которые спали. Теперь никто не может отнять у меня честь быть первым исследователем космических лучей на Земле.
Никола Тесла, 1937 г. (50)
В этом утверждении Никола Тесла ошибся в последнем предложении. Относительно недавно, в 2002 году, половину Нобелевской премии выдали итальяно-американцу Р. Джаккони, который экспериментально обнаружил источник рентгеновского излучения в созвездии Скорпиона. Еще два лауреата (М. Косиба, Р. Дэвис) были удостоены Нобелевской премии «за обнаружение космических нейтрино» – особых лишенных заряда частиц с высокой проникающей способностью, которые, как считается, могут пролететь сквозь целую планету, не взаимодействуя с веществом. Но на нобелевских церемониях никто из вышеперечисленных ученых и не подумал упомянуть имя Николы Теслы, который совершенно ясно и недвусмысленно высказался и по поводу существования внеземного рентгеновского излучения, и по поводу космических потоков беззарядовых частиц с высокой проникающей способностью еще в серии статей 1896–1897 годов.
Некоторые из этих лучей обладают такой потрясающей силой, что могут пройти через тысячи миль твердого вещества.
Никола Тесла, «Радиоэнергия революционизирует мир», 1934 (52)
1899 г. Тесла открыл то, что ныне называют реликтовым микроволновым излучением.
Солнце, однако, излучает особую, обладающую огромной энергией радиацию, которую я обнаружил в 1899 году. Двумя годами ранее я занимался исследованиями радиоактивности, в результате чего пришел к выводу, что наблюдаемые явления объясняются не молекулярными силами, свойственными веществу как таковому, но вызываются космическим излучением с исключительной проникающей способностью. То, что оно исходит от Солнца, очевидный факт, так как, несмотря на то что многие небесные тела, несомненно, обладают подобным свойством, совокупное облучение, получаемое Землей от всех солнц и звезд вселенной, составляет лишь немногим более четверти одного процента того, что она получает от светила. Следовательно, искать космические лучи в другом месте – почти то же самое, что искать вчерашний день. Мое предположение поразительным образом подтвердилось, когда я обнаружил, что от Солнца действительно исходит излучение, замечательное непостижимо малой величиной составляющих его частиц и скоростью их движения, безмерно превышающей скорость света. Это излучение, сталкиваясь с космической пылью, генерирует вторичное излучение, сравнительно слабое, но явно обладающее проникающей способностью, интенсивность которого почти одинакова во всех направлениях.
Никола Тесла, «Энергия нашего будущего», 1931 (53)
То, что в данной цитате речь идет именно о фоновом космическом микроволновом излучении, которое, как считается, почти равномерно заполняет всю Вселенную (интенсивность почти одинакова во всех направлениях), следует из контекста (53), где Тесла далее критикует космологические теории немецких ученых, которые «проводили исследования этого излучения в 1901 году». Реликтовое излучение до сих пор связывают именно с космологическими баснями (вроде теории «большого взрыва») о происхождении Вселенной (потому и реликтовое, мол, очень древнее). Для тех, кто усомнится, что Тесла имел технические возможности для исследования лучей такой малой длины волны, сошлемся на работу (13), где Тесла прямо указывает, что длительное время работал с «волнами длиной в один миллиметр», что соответствует по диапазону реликтовому излучению (максимум спектра соответствует длине волны 1,9 мм).
Из этого сразу следует несколько важных выводов, один из которых состоит в том, что мы не знаем историю открытия этого явления. Считается, что экспериментально существование реликтового излучения доказали Арно Пензиас и Роберт Вудроу Вильсон из Bell Telephone Laboratories (штат Нью-Джерси) в 1965 году, за что, как водится, оба получили Нобелевскую премию по физике в 1978 г. Интересно, что в своей Нобелевской лекции Вильсон упомянул, что «первые экспериментальные доказательства космического микроволнового фонового излучения были получены (но не признаны) задолго до 1965 г.», но тактично умолчал об имени первооткрывателя.
1896 г. Тесла прилагал значительные усилия в исследовании внутренней структуры вещества и в серии статей по рентгеновским лучам (43) высказал и детально обосновал предположение, что отпечатки на фотопластинках происходят вследствие корпускулярной бомбардировки, происходящей при распаде вещества до некоторого первородного состояния.
Эти исследования предшествовали открытию радия мадам Склодовской и Пьером Кюри и доказали, что радиоактивность есть обычное свойство вещества и что оно излучает маленькие частицы различных размеров, обладающие огромными скоростями, – представление, воспринимавшееся с недоверием, но в итоге признанное истинным.
Никола Тесла, «Мировая система беспроводной передачи энергии», 1927 (13)
Считается, что открытие явления радиоактивности сделал француз А. Беккерель в том же 1896 г., который исследовал явление засветки фотопластинки солями урана. В последующем гигантский вклад в исследование радиоактивности внесли М. Склодовская-Кюри и Пьер Кюри. За открытие и исследование явления самопроизвольной радиоактивности А. Беккерель совместно с супругами Кюри получил Нобелевскую премию по физике за 1903 год, а Мария Кюри стала первым в истории дважды Нобелевским лауреатом, получив в 1911-м премию по химии «за открытие элементов радия и полония, выделение радия и изучение природы и соединений этого замечательного элемента».
Блестящее открытие исключительно «радиоактивных» веществ, радия и полония, миссис Склодовской-Кюри доставило и мне огромное личное удовольствие, будучи успешным подтверждением моих ранних экспериментальных демонстраций электризованных светящихся потоков первичной материи, или эманации частиц (Electrical Review Нью-Йорк, 1896–1897), которые в то время были встречены с недоверием. Они пробудили нас от поэтических мечтаний… к простой, осязаемой реальности весомой среды крупных частиц, или физических носителей силы… Они приводят нас к радикально новой интерпретации изменений и трансформаций, которые мы наблюдаем… Если это так, тогда, возможно, должны измениться даже наши представления о пространстве и времени.
Никола Тесла, «Беспроводная передача электрической энергии как способ борьбы за мир», 1905 г. (22)
Отнюдь не оспаривая и не ставя под сомнение чьи-либо научные заслуги в данном случае, просто из вредности упомянем, что Тесла в 1937 году опубликовал сообщение, что его вакуумная трубка позволит получать радий в любом количестве по цене не больше 1 доллара за фунт (50).
Выразив «раздражение», что некоторые газеты указали, что он «дал полное описание» его трубки, разбивающей атомы, на вчерашнем обеде, д-р Тесла сказал, что он связан финансовыми обязательствами «с участием огромной суммы денег», против разглашения этой информации. «Но это не эксперимент», – заявил он. «Я построил, продемонстрировал и использовал её».
«Передача сообщений к планетам предсказана д-м Теслой», New York Times, 1937 г. (50)
В данном случае автор книги считает нужным лишь подтвердить, что располагает некоторой информацией из первоисточников о существовании упомянутых Теслой финансовых обязательств, эта информация была частично рассекречена только в последнее десятилетие. Соответствующее соглашение было заключено с Советским Союзом, и решение было принято лично И. В. Сталиным. К этой истории мы еще вернемся чуть позже.
Известно о существовании в Музее Теслы в Белграде документов, в которых содержится описание Теслой того, как остановить распад радиоактивных элементов радия и изотопов урана» (54). Об этой же идее вскользь упоминал Тесла в интервью 1931 г. (55) и 1934 г. (52).
Обобщая тему, автор книги считает необходимым сказать, что представления Теслы образца 1900 года о радиоактивности и вообще о субатомной структуре вещества до некоторой степени соответствуют представлениям, которые были приняты в ядерной физике в 1940-х и даже 1950-х годах, времени расцвета этой области знаний. Здесь имеется в виду практическая и экспериментальная сторона вопроса, а не теория радиоактивного распада. Тесла многократно выдвигал возражения против идеи получения энергии из процессов распада материи. В вышеприведенном интервью, упомянув о вакуумной трубке, способной производить радий по цене в 1 доллар за фунт, Тесла продолжает:
Среди прочего, это позволит производить дешевые заменители радия в любом требуемом количестве и будет, в общем, сразу более эффективным в разрушении атомов и трансмутации материи. Тем не менее эта трубка не откроет способ использовать атомную энергию или субатомную для силовых цепей.
«Передача сообщений к планетам предсказана д-м Теслой», New York Times, 1937 г. (50)
Автор книги отдает себе отчет, что утверждение, что Тесла внес вообще какой-либо вклад в ядерную физику, вызовет яростное сопротивление в среде специалистов, ибо эта область считается вотчиной квантовой механики и разнообразных полумистических теорий, и все же абсолютно уверен, что придет день, когда будет строго доказано, что Тесла опередил или даже превзошел в понимании фундаментальных основ строения материи абсолютно всех физиков XX века, и даже ядерщиков.
Начать, конечно же, нужно с Резерфорда, который считается «отцом» ядерной физики и создателем планетарной модели атома, сформулированной им в 1911 г. Еще в лекции 1891 года, когда не было известно ничего о субатомной и зарядовой структуре вещества и Тесла называл заряженные частицы просто «наэлектризованными атомами», Тесла сказал примечательную фразу:
Бесконечно малый мир, с молекулами и их атомами, вращающимися и движущимися по орбитам, во многом подобно небесным телам, несущими и скорее всего вращающими вместе с собой эфир, или другими словами, несущими с собой электростатические заряды, представляется мне наиболее вероятной точкой зрения, и такой, которая правдоподобным образом объясняет большинство из наблюдаемых явлений.
Никола Тесла, лекция для сотрудников AIEE в Колумбийском университете, 1891 г.
Для сравнения – даже в 1904 году «открыватель» электрона Дж. Дж. Томсон, впоследствии Нобелевский лауреат, сформулировал теорию, что атом имеет структуру, подобную «сливовому пудингу», в котором отрицательно заряженные корпускулы набиты в атом, как изюм в тесте пудинга, т. е. распределены равномерно по объему. Таким образом, отбрасывая Томсона, мы вполне вправе сказать, что Тесла на двадцать лет опередил Резерфорда, планетарная модель атома которого возникла не на пустом месте (в дальнейшем Тесла выдвигал серьезные возражения против этой идеи Резерфорда).
Я прекрасно сознаю, что сделал Тесла в разных областях техники. В своих исследованиях я часто пользовался трансформатором Теслы как средством получения высоких напряжений.
Э. Резерфорд (56)
Тем не менее, в отличие от многих и многих так называемых ученых, которые специализируются на переписывании чужих статей и усовершенствовании чужих экспериментов, Резерфорд представляется действительно выдающимся физиком, причем экспериментатором, а не теоретиком. Получив в 1908 году Нобелевскую премию по химии «за проведённые им исследования в области распада элементов в химии радиоактивных веществ», физик Резерфорд удивился и изрек свое знаменитое: «Вся наука делится на физику и коллекционирование марок».
Автор книги еще раз хотел бы сказать, что, несмотря на то что представление именно о Николе Тесле, а не Резерфорде, как основоположнике ядерной физики неизбежно вызовет отторжение у современного ученого, торопиться с выводами точно не следует.
Данная тема оказалась настолько интересной и обширной, что неизбежно выходит далеко за рамки краткого обзора научных достижений Теслы, которому посвящена эта глава книги. Поэтому автор книги ограничится здесь только анонсом того факта, что исследования в этом чрезвычайно захватывающем направлении ведутся и, после должного осмысления и аргументации, будут представлены в надлежащем виде. Пока же сообщим читателю, что одним из основополагающих достижений в ядерной физике является открытие нейтрона, существование которого, как считается, предсказал Резерфорд в 1920 году и экспериментально доказал в 1932 году его ученик, Джеймс Чедвик (James Chadwick), который, само собой, получил за это открытие Нобелевскую премию по физике в 1935 г. Именно открытие нейтрона повлекло за собой изучение цепных ядерных реакций и далее вплоть до Хиросимы и Нагасаки.
На самом деле нейтроны как относительно крупные беззарядовые частицы, соответствующие «простой, осязаемой реальности весомой среды крупных частиц, или физических носителей силы» (см. выше), – это открытие Теслы, сделанное им еще в 1896–1897 гг., в те времена, когда Чедвик еще ходил в ясли. Автор книги увидел и осознал эту идею самостоятельно, но в дальнейшем обнаружил, что и Тесла понимал этот вопрос совершенно так же, прямо называя генерируемые своей системой частицы «нейтронами».
Все мои исследования, похоже, указывают на вывод о том, что они являются маленькими частицами, каждая из которых несет такой маленький заряд, что мы вправе называть их нейтронами.
Никола Тесла, интервью Джону О’Нилу, 1932 (57)
Вопрос, несомненно, чрезвычайно любопытен и требует изучения, однако именно здесь мы натыкаемся на трудности, которые заключаются в том, что, к сожалению, экспериментальным работам Николы Теслы по исследованию структуры вещества повезло значительно меньше, чем всемирно известным работам Резерфорда. Подытоживая предварительно тему, приведем цитату, характеризующую взгляды Теслы в 1919 году.
В качестве примера я могу упомянуть освоение атомной энергии, которое занимает сейчас главное место в общественном сознании… Очевидная истина такова. С давних пор философы пытаются выяснить строение материи, и это привело их к выводу, что микромир (микрокосм) и макромир (макрокосм) очень похожи в некоторых отношениях. Солнца, звезды и луны на небесах имеют свою копию в молекулах, атомах и электронах. Соответственно, все тела состоят из независимых частиц различных размеров, вращающихся друг вокруг друга с чудовищными скоростями и содержащих кинетическую энергию, количество которой, как доказывают последние исследования в области физики, беспредельно. Если бы можно было уловить и преобразовать ее, мы могли бы иметь энергию в неограниченных количествах в любом месте на нашей планете. Такая возможность уже давно открылась лучшим умам в изобретательской среде. Идея не нова, но наука сделала ее более определенной и точной. Я и сам посвятил много размышлений и экспериментов реализации этой мечты с момента открытия рентгеновских лучей двадцать четыре года тому назад. Первый внушающий надежды результат был достигнут в 1897 году, когда мне удалось осуществить выброс первичного вещества на расстояние далее, очевидно, неразложимого, и уловить некоторое количество его энергии. Это вошло отдельной темой в мое выступление перед Нью-Йоркской академией наук в том же году, о чем, однако, лишь в некоторых технических изданиях появились скудные сообщения: недостаток времени не позволил мне подготовить доклад для публикации. Впоследствии я создал прибор, который, пожалуй, и сегодня считался бы уникальным и в высшей степени приспособленным для осуществления первого шага, а именно для выделения атомной энергии. Но, несмотря на то что мой способ был перспективным, а один из талантливейших физиков профессор Бушерер присоединился к моему мнению, эти исследования послужили лишь доказательством того, что в этом процессе количество затрачиваемой энергии превышает количество получаемой. Я же в самом деле удовлетворен тем, что проблема во многом имеет ту же природу, что и процесс, происходящий при разделении небесных светил.
Но, что вполне естественно, будет задан вопрос: а как насчет феномена радия? Здесь мы имеем пример фактического распада материи, сопровождающегося выделением огромного количества энергии. Я высказался по этому поводу в 1896 году, задолго до того, как эти явления были тщательно отслежены и изучены. По моему мнению, энергия, определяющая процесс распада, присуща пространственному эфиру, и в таком контексте стоящая перед нами проблема выглядит более рациональной в плане овладения энергией окружающей среды. Это представляется мне более перспективным направлением исследований, следуя которому, можно добиться реальных успехов.
Никола Тесла, «Энергия будущего», ≈1919 (43)
Зная нрав Теслы, можно не сомневаться, что упомянутое им выступление перед Нью-Йоркской академией наук, конечно же, не могло не содержать принципиально новый научный материал. Вот, например, в работе (58) Тесла говорит, что исследовал, «до какой степени скорость потока (Электронов. – К.) обуславливает генерирование и влияет на характер испускаемых лучей». И вот что он обнаружил:
Мои усилия по поиску ответа на третий из перечисленных выше вопросов привели к установлению с помощью подлинных фотографий тесного родства между лучами Ленарда и Рентгена (То есть пучка электронов и рентгеновских лучей. – К.). Фотографии, имеющие отношение к этой теме, были представлены на заседании Нью-Йоркской академии наук (о котором уже упоминалось) в апреле 1897 года, но, к сожалению, краткость моего выступления и сосредоточенность на других вопросах привели к тому, что я упустил наиболее важное – описание способа получения этих фотографий. Эту оплошность я смог лишь отчасти исправить на следующий день. Воспользовавшись возможностью, я представил иллюстрации и рассказал об экспериментах, в которых была доказана отклоняемость рентгеновских лучей под воздействием магнита, что устанавливает еще более тесное родство, если не идентичность лучей, названных именами этих двух первооткрывателей. Однако подробное описание этих экспериментов, такое же полное, как другие исследования и результаты, в гармонии между собой и ограниченные до узкой темы, доводимой мной научному обществу, появится в более подробном сообщении, над которым я без спешки работаю.
Никола Тесла, «Об источнике рентгеновских лучей…», 1897 (58)
Что ж, Тесла действительно читал лекцию в Нью-Йоркской академии наук 6 апреля 1897 года, на которой присутствовало около четырех тысяч человек. Всем хотелось поглазеть на работу установки, демонстрирующей скелет живого человека (7). В (55) Тесла сам также утверждает, что в этом недавнем выступлении перед Нью-Йоркской академией наук представил «великое множество» «трубок Ленарда улучшенной конструкции», и Тесла действительно в последующем готовил текст указанной лекции к публикации. «Эта лекция была найдена в архиве Музея Николы Теслы в Белграде в виде машинописного текста с дополнениями и исправлениями, сделанными его рукой. Однако оригинальные фотографии, упоминаемые в тексте и значащиеся под номерами 13 и 14, обнаружить не удалось. На запрос музея из Нью-Йоркской академии наук пришел ответ, что целиком лекция не издавалась ни в одном журнале Соединенных Штатов» (42).
Тем не менее до настоящего времени известна только та часть лекции, которая касается высокочастотных генераторов. Наиболее важная часть лекции Николы Теслы, посвященная рентгеновским лучам и экспериментальным доказательствам совершенно невозможного с точки зрения современной науки отклонения рентгеновских лучей под воздействием магнита, недоступна для изучения. Сама лекция во всех публикациях фигурирует под названием «Высокочастотные генераторы и контроллеры для электрических цепей». Стоит заметить, что поскольку лекция начинается именно с истории рентгеновского открытия, из этого почти наверняка следует, что именно в первой части лекции Тесла демонстрировал трубки Ленарда и Рентгена и уже затем перешел к осцилляторам. Из этого следует вывод, что, вероятнее всего, исчезло отнюдь не две фотографии, как указано выше, а минимум 14 иллюстраций, т. е. с первой и до четырнадцатой.
Забегая вперед, скажем, что эксперименты Теслы с рентгеновскими лучами являются основой т. н. «лучей смерти», столь нашумевших тридцать лет спустя. Сам Тесла, насколько можно судить, намеренно не опубликовал свои идеи в этой части, и судить о подлинных результатах Теслы можно только по крайне скудным газетным сообщениям и архивным изысканиям, так что история эта пока не закончилась.
Фото 35. Уведомление об избрании Николы Теслы действительным членом Нью-Йоркской академии наук, 1907 г.
1898 г. Тесла разрабатывает, публично демонстрирует и патентует первую в мире радиоуправляемую модель катера, став, таким образом, официальным основоположником телеуправления и автоматики. Сам термин «телеавтоматика» тоже был введен изобретателем (9). Уже тогда Тесла предлагал бизнесу и военным создавать телеуправляемые суда и торпеды, роботы-автомобили и промышленные роботы. При этом высказывал мысль о возможности создания автоматов, обладающих собственной памятью и «электрическим мозгом», способностью накапливать опыт, самосовершенствоваться и действовать во многом подобно разумным существам. Предсказывал, что роботы будут все больше заменять людей на поле боя, и предлагал конкретные разработки правительству США. В ответ на все эти предложения и чиновники, и бизнес, и ученые того времени только громко смеялись. Для них предложения Теслы выглядели абсолютно несерьёзно и неправдоподобно. Наиболее яростные противники Теслы вообще утверждали, что эксперимент с лодкой – это цирковой фокус, и Тесла попросту дурачит публику.
Автора книги заинтересовал вопрос, почему Тесла не воспользовался принципом беспроводной передачи энергии для запитывания двигателя и управления лодкой, а применял, согласно патенту, простые по нынешним меркам избирательные цепи с когерерными приемниками для включения тех или иных приводов, запитывавшихся от бортового аккумулятора. Эта ситуация в свете известных экспериментов Теслы была нелогичной. Ответ на этот вопрос нашелся:
К сожалению, следуя совету своих поверенных, я указал в этом патенте, что управление осуществляется посредством одиночного контура и детектора хорошо известного типа, потому что еще не получил патенты на принципы и устройства обеспечения избирательности. На самом же деле лодки управлялись несколькими взаимодействующими контурами, и их взаимовлияние было исключено. Максимально обобщая, я использовал приемные контуры в форме витков, включающих конденсаторы, поскольку разряды моего высоковольтного передатчика настолько ионизировали воздух в зале, что даже очень небольшая антенна могла часами черпать электричество из окружающей атмосферы.
Никола Тесла, «Мои изобретения», 1919 г. (59)
Такая предусмотрительность Теслы в плане обеспечения секретности была совсем не лишней. Например, в 1900 г. два патента в области телеавтоматики получил вице-адмирал американского флота Б. А. Фиск. Хотя патентные заявки были поданы им позже Теслы, ловкий чиновник, пользуясь своим положением, смог закрепить за собой часть прав на чужое изобретение (25). Все базовые идеи Теслы в области автоматики и радиоуправления были реализованы только спустя многие десятки лет, и, вне всякого сомнения, все последующие годы роль и права Николы Теслы как первопроходца в области телеавтоматики системно затирались в коммерческих интересах третьих лиц.
Кто, например, сегодня знает, что еще в самом начале XX века Тесла спроектировал и продемонстрировал в действии управляемые беспроводные воздушные торпеды (60), способные «опуститься почти точно в выбранную цель на расстоянии нескольких тысяч миль»?
Фото 36. Телеуправляемая лодка Теслы, 1898 г.
Что касается Нобелевских премий, то вообще за чисто технические достижения награждения производились редко. Однако, к примеру, в 1912 году шведу Нильсу Далену выдали Нобелевскую премию по физике «за изобретение автоматических регуляторов, используемых в сочетании с газовыми аккумуляторами для источников света на маяках и буях». Насколько можно понять, фонари автоматически включались ночью и выключались днем и экономили газ. К тому времени фоторезисторы были известны уже несколько десятилетий. Правда, существуют и другие обстоятельства этого награждения, и завидовать там совершенно точно не нужно.
1898 г. Тесла опубликовал статью об обнаруженном им явлении высокочастотного нагрева металлов и диэлектриков, которое легло в дальнейшем в основу целого класса промышленных технологий индукционного нагрева и плавки металлов (25).
1899–1900 гг. Тесла исследует свойства вещества при очень низких температурах и изобретает принципиально новый способ изоляции проводников, который заключается в замораживании материала, окружающего проводники, и, таким образом, «получении изоляции путем непрерывного расходования умеренного количества энергии, а не просто использования физических свойств, присущих изоляционным материалам». Простейший пример такой системы – передача «через трубчатый проводник водорода при очень низкой температуре, замораживающей окружающий материал и, таким образом, обеспечивающей идеальную изоляцию путем косвенного использования электрической энергии» (61). На эту разработку Тесла получил патенты в 1900 г. Кроме того, в патенте № 685012 от 22.10.1901 г. Тесла предложил охлаждать резонансные цепи жидким кислородом для достижения максимально возможного резонансного усиления, а не просто снижения потерь за счет охлаждения проводников.
Фото 37. Подлинный рисунок 1917 года. «Высокочастотный невидимый электрический луч, отраженный от корпуса субмарины, заставляет светиться экран на другом или даже этом же корабле, предупреждая о том, что подводные лодки рядом» (33)
1900 г. Тесла впервые в мире высказал идею радиолокации практически в классическом виде (25). Конкретная практическая схема радиолокации была предложена позже, например в (33). Схема включала в себя генерацию ВЧ-луча, отражение его от корпуса подводной лодки и отслеживание цели на фосфоресцирующем экране.
Здесь нужно оговориться, что для радиолокации подводных лодок Тесла предлагал использовать явление распространения и отражения электрических волн, но явно не подразумевал под этим понятием волновое излучение Герца, которое в воде распространяется плохо. В вышеуказанной статье Тесла говорит о «high-frequency invisible electric ray» и «oscillating electrostatic currents», поэтому можно считать, что эта идея Теслы до конца не реализована до сих пор, на радость подводным лодкам.
Стоит добавить, что реальные практические разработки систем радиолокации во всем мире начались практически одновременно только в 1930-х годах. Нобелевских премий за эти технологии никогда не давали в силу очевидной секретности.
1900 г. Тесла подал патентную заявку № 16899, в которой, среди прочего, исчерпывающе изложил принципы глобальной системы радионавигации, основанной, впрочем, на других физических принципах, нежели нынешние системы GPS и ГЛОНАСС, и не требующей спутников. В остальном же суть абсолютно та же, поэтому неизбежным выводом является то, что и здесь Тесла опередил технику более чем на семь десятилетий.
Очевидно, курс корабля можно легко определять без компаса… Если узлы и пучности поддерживаются в неизменном положении, скорость судна с приемником можно безошибочно рассчитать… на основе простых геометрических законов. Подобным же образом на основе наблюдений стоячих волн можно определять расстояние от одной точки до другой, долготу и широту, час и т. д.
Никола Тесла, патент USA № 787 412 от 18.04.1905 г.
1900 г. Тесла выдвигает идею «мировой системы» и подробно излагает технические и технологические принципы всемирной телекоммуникационной системы: создание глобальных открытых и закрытых каналов связи между абонентами всего мира, объединение коммутаторов и служб, универсальность каналов связи для передачи телеграфных и телефонных сообщений, а также изображений и музыки, создание единых новостных центров, всемирной системы по распространению музыки, печатных или рукописных знаков, шифров, квитанций, фотографий и пр., создание всемирной службы точного времени, создание глобальной навигационной системы и пр.
Для сравнения напомним, чем жило человечество в 1900 г. В этом году был испытан первый двухтактный дизельный двигатель, полетел первый дирижабль, а в следующем 1901 году Маркони якобы передал первую букву через Атлантику. Область телекоммуникаций ограничивалась телефоном и телеграфом, причем международные корпорации давно протянули телеграфные провода не только в Америку, но и в Африку, Индию, Австралию и вплоть до Новой Зеландии.
По нынешним временам, в идеях Теслы ничего удивительного нет, все это реальность сегодняшних дней, за исключением беспроводной передачи энергии. Оценить, насколько представления Теслы в области создания глобальных телекоммуникационных сетей были фантастичными для 1900 г., поможет следующий пример. В 1974 г. академик А. Д. Сахаров «предсказал» появление всемирной информационной системы, за что его до сих пор расхваливают специалисты в этой области. Однако в то время, когда академик Сахаров только пророчествовал, американское агентство по перспективным оборонным научно-исследовательским разработкам ARPANET уже приступило к использованию электронной почты и простейших сервисов в своей распределенной компьютерной сети. Из этого секретного проекта, выполненного по заказу военных США, и вырос нынешний интернет.
Безусловно, «Мировая система» Теслы, анонсированная им в 1900 году, полностью отражает самую сущность сети современных мировых телекоммуникаций. Эта система является и технологической основой для установления глобального информационного общества, к которому стремился и которое провозгласил Тесла, говоря о необходимости всемирного объединения. Под объединением Тесла имел в виду достижение взаимопонимания между людьми путем обмена информацией и выравнивания диспропорций в развитии отдельных территорий, а не механического обезличенного равенства, стирающего индивидуальности.
Впрочем, на вопрос журналиста о том, что будут делать люди, потребности которых будут удовлетворены за счет дешевой электроэнергии и увеличения производства, и обратят ли они «возросший досуг на развитие искусства и души», «д-р Тесла был пессимистичен»:
«Слишком много свободного времени, и цивилизация пойдет в унитаз, – сказал он решительно. – Человек рожден, чтобы работать, страдать и бороться, а если он избегает этого, он деградирует».
Никола Тесла, 1932 г. (19)
Однако физические принципы передачи информации, принятые сегодня, отличаются от принципов «мировой системы» Теслы хотя бы тем, что совершенно не приспособлены к передаче силовой энергии.
И конечно же, из того, что нам доподлинно известно, вершиной работы Николы Теслы является система беспроводной передачи энергии. Беспроводная электростанция Теслы, помимо всего вышеперечисленного и уже так или иначе достигнутого, предназначалась также для управления климатом (перемещение атмосферной влаги и управление осадками, рассеивание и сгущение туманов), освещения океанов, производства азотных соединений из атмосферного воздуха (дешевые удобрения в любом количестве), передачи сигналов на межпланетные расстояния, определения местонахождения подводной лодки, айсбергов и других объектов в любой части света, обнаружения движущегося на далеком расстоянии шторма, осуществления других метеорологических наблюдений, разделения газовых смесей, обнаружения полезных ископаемых и еще многого из того, что пока не реализовано.
Пока нет настоятельной необходимости для беспроводной передачи электроэнергии в промышленных количествах, но как только она возникнет, система будет применяться с совершенным успехом… Все мы совершаем ошибки, но насколько я изучил этот вопрос в свете моих нынешних теоретических и экспериментальных знаний, я преисполнился глубокой убежденности в том, что даю миру нечто во много раз превосходящее самые смелые мечты изобретателей всех времен.
Никола Тесла, «Тесла о развитии энергетики и чудесах будущего», 1934 г. (34)
Подробный разбор материалов касательно физических принципов функционирования беспроводной электростанции Теслы будет изложен в отдельном разделе настоящей книги.
В многочисленных наблюдениях, экспериментах и измерениях, качественных и количественных, я безошибочно установил, что электрическую энергию можно экономически эффективно передавать беспроводным способом на любое расстояние в пределах Земли. Они продемонстрировали, что возможно распределять энергию с центральной станции в неограниченных количествах, с потерями, не превышающими малой части одного процента, при передаче даже на самые большие расстояния, в 12 тысяч миль – на противоположный конец земного шара…
Что бы ни принесло будущее, всемирное применение этих великих принципов совершенно гарантировано, хотя его, возможно, придется долго ждать… Это не мечта, это просто достижение научной электрической инженерии, только дорогостоящее – слепой, трусливый, сомневающийся мир!..
Никола Тесла, «Беспроводная передача электрической энергии как способ борьбы за мир», 1905 г. (22)
1900 г. Тесла опубликовал мысль, что принципиально возможно создание самодействующего теплового двигателя, который будет извлекать энергию в умеренных количествах из окружающей среды (9). Те, кто, прочитав эту фразу, уже открыл рот, чтобы посмеяться над невозможностью реализации этой идеи, должен вспомнить, что примеры таких двигателей у нас ежечасно перед глазами – это живые организмы, которые «работают» на энергии, получаемой из окружающей среды. Именно на это обстоятельство, кстати, уже тогда указал Тесла. Рабочий процесс такого двигателя, работающего на тепловой или иной энергии окружающей среды, полностью основывается на преобразовании извлекаемой энергии в другие формы в процессе прохождения (9). Тесла много лет работал над разработкой такого двигателя и преобразователей, чем кончилось, не совсем ясно (точнее говоря, автор книги пока толком не исследовал работы Теслы в области «чистой» механики и теплоэнергетики).
Известен целый ряд изобретений и идей Теслы на обрисованном им пути (механические осцилляторы, компрессоры, турбины разных конструкций, прообразы солнечных батарей и пр.). Эта тема постоянно занимала мысли изобретателя, например большой обзор по разработкам «зеленой» энергетики он опубликовал в 1931 г. (53). Сами по себе принципы утилизации тепловой энергии окружающей среды на сегодняшний день в немалой степени изучены. На этом принципе устроены, скажем, абсорбционные холодильники, не потребляющие электроэнергию. В России еще до революции продавался абсорбционный холодильник «Эскимо», который работал на дровах или подобном топливе. В Советском Союзе после войны шли довольно обширные исследования по теме «энергетической инверсии», основоположником которой в России считался К. Э. Циолковский. Проблемой энергетической инверсии серьезно занимался, скажем, П. К. Ощепков – основоположник отечественной радиолокации и интроскопии. Точно так же, как это сделал Тесла в работе (9), в СССР были поставлены под сомнение некоторые недостаточно обоснованные теоретические заявления Карно и Кельвина. Однако в основе идей Теслы лежит в первую очередь «радикальный отход от уже известных способов… который бы давал возможность получать больше энергии». Этот вопрос выходит за рамки настоящей книги и требует дополнительных исследований.
1909 г. Тесла запатентовал изобретение первичного двигателя (патент № 1061142 от 06.05.1913 г.), который специалисты считают прототипом современной газовой турбины (25). Автор книги не является специалистом по турбинам и не готов комментировать достоинства и недостатки этих работ Николы Теслы. Насколько можно понять из обзоров, специалисты сходятся во мнении, что это «прекрасная идея и превосходная машина», но она не могла быть реализована в то время и при тогдашнем уровне металлургии, материаловедения и механообработки.
1918 г. Тесла запатентовал оригинальный автомобильный спидометр. Спидометры и тахометры уже существовали к тому времени как минимум пару десятков лет. Тем не менее этот патент Теслы купил, ни много ни мало, сам Генри Форд. Впрочем, от предложения Теслы построить автомобиль, самостоятельно выполняющий огромное количество разнообразных операций, Форд отказался. Эта идея реализуется только в наше время.
1921–1928 гг. Тесла патентует самолет вертикального взлета, точнее, нечто среднее между вертолетом и самолетом. Это последний патент, выданный в США Николе Тесле.
Важнейшее применение беспроводная энергия найдет, несомненно, в запуске летательных аппаратов, энергоснабжение которых можно легко осуществлять без соединения на корпус, так как, несмотря на то что токи в своем движении притягиваются к земле, электромагнитное поле создается в окружающей ее атмосфере. Если аэроплан имеет проводники или контуры, точно настроенные и должным образом расположенные, энергия будет отобрана этими контурами, как это произошло бы с жидкостью, стекающей в проделанное в контейнере отверстие. На промышленной установке большой мощности таким способом можно получать достаточно энергии для приведения в движение каких бы то ни было летательных аппаратов. Я всегда считал это наилучшим и рассчитанным на долгое время решением проблемы полетов. Не потребуется никакого топлива, так как используется легкий электродвигатель с большим числом оборотов. Тем не менее, ожидая медленного прогресса, я разрабатываю новый тип летательного аппарата, который, по-видимому, хорошо подходит для удовлетворения нынешней необходимости безопасного, небольшого и компактного «аэрофотосъемщика», способного подниматься и опускаться вертикально.
Никола Тесла, «Мировая система беспроводной передачи энергии», 1927 (13)
Поскольку авторство научных открытий и технических достижений почти всегда является предметом споров, то автор книги в изложении вышеперечисленных фактов не стремился во всех деталях исследовать вопросы научного приоритета и видел свою цель скорее в том, чтобы указать на малоизвестные факты, а также представить научную позицию Николы Теслы по тем или иным вопросам, которая отличается от других тем, что она, как правило, неизвестна людям и даже научному сообществу.
Нужно ли говорить, что вышеперечисленный список далеко не полный и охватывает, по большей части, всего лишь период работы Николы Теслы с 1888 по 1904 г. (16 лет). На фоне потрясающих достижений ученого даже как-то неловко вспоминать про такую мелочь, как электрические часы, газовый запальник, электрические счетчики или идея электрической пишущей машинки, управляемой человеческим голосом.
Метод и аппаратура для генерации электрических токов, устройство для увеличения тяги автомобильных колес, новые электрические осветительные приборы, якорь для двигателей переменного тока, поршневые двигатели, способ удаления газообразного вещества из замкнутых емкостей, промышленная утилизация воды для целей отопления, искусство передачи электрической энергии через природные среды, система беспроводной передачи, конструкция паровых и газовых турбин, способ и устройство для термодинамического преобразования энергии, способ и устройство для экономического преобразования энергии пара турбинами, метод и аппаратура для движения жидкости, метод и аппаратура для производства глубокого вакуума, аппаратура для работы автомобилей, устройства для обработки и транспортировки серы, устройства для генерации энергии с помощью упругих гидротурбин – это названия патентных заявок, которые подготовил или над которыми работал Тесла, но которые не довел до получения патентов, иногда – просто не уплатив патентный сбор. Кстати, эти документы впервые были опубликованы только в 2013 году (62).
Важно отметить и из содержания настоящей главы ясно видно, что основным содержанием и целью научно-исследовательских работ Теслы было постижение новых, ранее неизвестных науке физических принципов и обращение их на службу человеку путем создания полезных моделей и работающих образцов новой техники. Их было так много, и они открывали настолько широкие возможности, что Тесла не успевал их патентовать, да и вряд ли возможно запатентовать все нюансы любого изобретения. Этим в изобилии пользовались коммерчески подкованные подражатели, способные лишь незначительно усовершенствовать сделанное другими, но отнюдь не открыть что-то новое.
Большинство из этих фактов, если не все, прекрасно известно в Англии; тем не менее, согласно некоторым отчетам, один из ведущих английских электриков, не колеблясь, говорит, что я работал в направлении, указанном профессором Феррарисом, и в упомянутом выше номере вы, кажется, называете меня подражателем.
Теперь я спрашиваю вас, где эта всемирно известная английская справедливость? Я пионер, а меня называют подражателем. Я не подражатель. Я выпускаю оригинальную работу или вообще ничего.
Никола Тесла, «Электромоторы», 1891 г. (63)
Предвосхищая возражения различного рода околонаучных зануд, скажем, что автор книги отдает себе отчет, что открытие нового эффекта – это нечто большее, чем просто факт его обнаружения. Кроме этого первого начального события, необходимо, как минимум:
• многократное воспроизводимое его наблюдение;
• исследование с целью выявления природы явления;
• объяснение и истолкование, хотя бы и неверное;
• подтверждение истинности теми или иными практиками;
• публикация результатов;
• признание научным сообществом.
Это было предельно ясно и самому Тесле, о чем он более чем определенно говорит, рассуждая о приоритетах в открытии рентгеновских лучей. Поэтому автор книги нисколько не желает умалить заслуги советских физиков, создавших лазеры, или немецких инженеров Siemens, создавших промышленные электронные микроскопы. Но нетрудно заметить и другую закономерность, когда на одном конце излагаемой истории – открытие, изобретение, идея или наблюдение Николы Теслы, а на другом – в той или иной степени выдающийся ученый, который не открыл новый принцип, а довел до конца (ну или хотя бы до Нобелевской премии) одну-единственную работу, первооткрывателем которой является Никола Тесла. Также нетрудно заметить, что целый ряд достижений Николы Теслы соответствует всем вышеперечисленным признакам научного открытия, кроме одного – «признание научным сообществом».
Отчасти это обусловлено тем, что в те годы почти все без исключения идеи Теслы воспринимались поначалу как чистая фантастика, однако многие были воплощены в реальности десятилетия спустя. О том, что идеи Теслы были не обычной фантазией, известной нам по произведениям писателей-фантастов, свидетельствует тот факт, что Тесла не предлагал абстрактных технических концепций, которые были бы доказанно признаны ошибочными в дальнейшем.
Проиллюстрируем на примерах. Например, писатель-фантаст Кир Булычев в 1978 году в своей знаменитой книге «Сто лет тому вперед» про Алису Селезневу изобразил, что в будущем газеты представляют собой нечто вроде мини-телевизоров, доставляемых читателям дронами. Ясно, что уже в наше время никому не придет в голову этого делать. Технологии пошли по пути, который еще в самом начале XX века обрисовал Тесла:
Простое и недорогое устройство, которое легко переносится, позволит получать на суше или на море основные новости, слышать речь, лекцию, песню или игру музыкального инструмента, передаваемую из любого другого региона земного шара.
Никола Тесла, «Беспроводная передача электрической энергии как способ борьбы за мир», 1905 г. (22)
Или, например, Тесла не говорил о возможности изобретения средств, которые могут сделать человека невидимым, как мечтал в те годы Герберт Уэллс. Не предлагал запускать астронавтов из пушки, как Жюль Верн. Не предлагал изготавливать паровозы на атомной тяге, как предлагали некоторые мастистые советские академики в 1940-х гг.
Словом, он совершенно верно видел научно-промышленную перспективу, видел и в значительной мере предопределил, по какому пути пойдет наука и техника, прозревал будущее, а не вымышлял. Безусловно, других примеров такого масштабного, ясного и точного видения путей развития в истории техники мы не находим.
Выражаясь максимально корректно, скажем, что работы Николы Теслы предвосхитили и предопределили десятки важнейших научных открытий и технических достижений, многие из которых (не меньше трех дюжин) были удостоены в последующем Нобелевских премий, а необыкновенное богатство и великолепие его идей до сих пор подпитывают тысячи ученых и инженеров всего мира. Если же выразиться чуть менее корректно, то скажем следующее: как известно, рост «долговязого электрика» составлял ровно шесть футов. Но если его измерять в Нобелевских лауреатах, то он гораздо длиннее…
Но, что характерно, после недолгого периода популярности в дальнейшем на многие десятилетия имя Николы Теслы стало неизвестно не только публике, но и профессиональному сообществу. В СССР первое издание с биографией ученого вышло только в 1959 году (56). И это в стране – индустриальном гиганте, к тому времени давно перевыполнившем титанический план ГОЭЛРО. Выдающийся американский исследователь д-р Сейфер Марк, во многом переоткрывший миру имя Николы Теслы, в предисловии к (7) пишет, что во второй половине XX века ему, инженеру-электронщику, пришлось предпринять специальные исследования, чтобы убедиться, что Никола Тесла – реально существовавший человек, а не выдумка журналистов.
Тому есть несколько объяснений.
Что касается Вашего последнего вопроса, а именно почему мир не знает Теслу, он ответил лучше всего, заявив, что он совершил непростительный проступок, не заведя постоянного пресс-агента, чтобы кричать на кровлях о своём величии… Затем также большинство изобретений Теслы, по крайней мере в общественном сознании, более или менее неосязаемо за счет того, что они слишком техничны и, следовательно, не подхватывают популярные фантазии…
Hugo Gernsback, Electrical Experimenter, 1919 г. (64)
Каждый человек, обогнавший свое время даже на 20 лет, как, например, Олег Лосев, оказывается почти в полном одиночестве, сталкивается с невежеством окружающих, непониманием и насмешками.
Тесла легко шагнул на сто лет вперед и оказался абсолютно один. Насколько можно понять, не существует ни одной лекции, статьи или патента, разработанного Теслой в соавторстве с кем-либо. Он не оставил учеников, и сегодня мы знаем о его наследии только благодаря работе сотен, а может быть, и тысяч людей, которые приложили усилия к делу розыска, накопления, разбора и публикации материалов из самых различных архивов. Эта книга смогла состояться только благодаря им, простым людям, большинство из которых не имеет отношения к академической науке, которые вдохновенно работали над сохранением и восстановлением наследия Николы Теслы, может и понемногу, но почти целую сотню лет. И ведь есть какая-то сила, которая двигала всеми, великая надежда, что придет день пробуждения, когда наука скажет, что в старых книгах правда, а что нет, множество слабых усилий сложится в мощный импульс, а светлое имя Николы Теслы ознаменует торжество человеческого разума над силами разрушения.
Многие из потенциальных первооткрывателей, потерпев неудачу в своих исканиях, испытывают чувство сожаления, что они родились в то время, когда всё уже свершилось и не осталось ничего, что можно сделать. Это ошибочное представление о том, что, в то время как мы успешно продвигаемся вперед, перспективы в сфере изобретательства иссякли, встречается довольно часто. В действительности всё обстоит как раз наоборот… Всё, что до сих пор достигнуто благодаря электричеству, – пустяк по сравнению с тем, что хранит в себе будущее.
Никола Тесла, «Электричество чудесным образом преобразит мир», 1915 (61)