Жанры
Авторы
Контакты
О сайте
Книжные новинки
Популярные книги
Найти
Главная
Авторы
Douglas C. Montgomery
Introduction to Linear Regression Analysis
Читать книгу Introduction to Linear Regression Analysis - Douglas C. Montgomery - Страница 1
Оглавление
Предыдущая
Следующая
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
...
58
Оглавление
Купить и скачать книгу
Вернуться на страницу книги Introduction to Linear Regression Analysis
Оглавление
Страница 1
Table of Contents
List of Illustrations
Guide
Pages
Страница 6
Страница 7
Страница 8
Страница 9
Страница 10
Страница 11
CHAPTER 1
INTRODUCTION 1.1 REGRESSION AND MODEL BUILDING
1.2 DATA COLLECTION
Example 1.1
Retrospective Study
Observational Study
Designed Experiment
1.3 USES OF REGRESSION
1.4 ROLE OF THE COMPUTER
Страница 20
CHAPTER 2
SIMPLE LINEAR REGRESSION 2.1 SIMPLE LINEAR REGRESSION MODEL
2.2 LEAST-SQUARES ESTIMATION OF THE PARAMETERS
2.2.1 Estimation of
β
0
and
β
1
Example 2.1
The Rocket Propellant Data
Computer Output
2.2.2 Properties of the Least-Squares Estimators and the Fitted Regression Model
2.2.3 Estimation of σ
2
Example 2.2 The Rocket Propellant Data
2.2.4 Alternate Form of the Model
2.3 HYPOTHESIS TESTING ON THE SLOPE AND INTERCEPT
2.3.1 Use of
t
Tests
2.3.2 Testing Significance of Regression
Example 2.3 The Rocket Propellant Data
Minitab Output
2.3.3 Analysis of Variance
Example 2.4 The Rocket Propellant Data
More About the t Test
2.4 INTERVAL ESTIMATION IN SIMPLE LINEAR REGRESSION
2.4.1 Confidence Intervals on
β
0
,
β
1
, and σ
2
Example 2.5 The Rocket Propellant Data
2.4.2 Interval Estimation of the Mean Response
Example 2.6 The Rocket Propellant Data
2.5 PREDICTION OF NEW OBSERVATIONS
Example 2.7 The Rocket Propellant Data
2.6 COEFFICIENT OF DETERMINATION
2.7 A SERVICE INDUSTRY APPLICATION OF REGRESSION
2.8 DOES PITCHING WIN BASEBALL GAMES?
2.9 USING SAS® AND R FOR SIMPLE LINEAR REGRESSION
2.10 SOME CONSIDERATIONS IN THE USE OF REGRESSION
2.11 REGRESSION THROUGH THE ORIGIN
Example 2.8 The Shelf-Stocking Data
2.12 ESTIMATION BY MAXIMUM LIKELIHOOD
2.13 CASE WHERE THE REGRESSOR
x
IS RANDOM
2.13.1
x
and
y
Jointly Distributed
2.13.2
x
and
y
Jointly Normally Distributed: Correlation Model
Example 2.9 The Delivery Time Data
PROBLEMS
{buyButton}
Подняться наверх