Читать книгу Рекомендации по проектированию безопасных установок для сушки угля. Оборудование. Примеры. Анализ ошибок - Dr.-Ing. W. Garber - Страница 6

02. Причины взрыво-пожароопасности при термической сушке углей
02.1. Уголь как горючее вещество. Структура. Выделение летучих

Оглавление

Угольное вещество представляет собой высокомолекулярные соединения, в которых макромолекулы состоят из связанных между собой шестиугольных ароматических колец – стабильных ядер, окруженных химически связанными с ядрами молекулами боковых углеводородных цепочек.

Гипотетическая структура молекулы угля и её термическое разрушение показаны на Рис.2. Разрушение структуры происходит по связям с наименьшими энергиями разрыва, например С – С (346 кДж/моль) или С – О (358 кДж/моль). В результате разрыва таких связей из угля выделяются летучие компоненты. Для сравнения тройная связь С=С в шестигранных ароматических структурах молекулы угля имеет энергию разрыва 836,3 кДж/моль. Это определяет высокую устойчивость ароматических шестигранных структур в молекуле угля.

«По мере подвода тепла частица угля нагревается, подсушивается, затем начинается выделение летучих. Чем больше содержание летучих в угле, тем интенсивнее происходит их выход. Выход летучих начинается при температурах тем более высоких, чем старее топливо. Из бурых углей выход летучих начинается при температуре около 170°С, из газового угля – около 210°С, из ПЖ – около 260°С, из тощих углей – около 320°С, из антрацита – около 380°С» [23]. Так часто описывают процесс термического выхода летучих в учебниках, добавляя, что основу летучих составляет метан СН4.

Реальность однако сложнее.

Во-первых температура начала выделения летучих из углей разной марки не может быть определена так однозначно, как это записано выше (и в учебниках). Следует учитывать, что метан, как и другие углеводороды выделяется из угля и без нагрева. По этой причине в шахтах постоянно контролируют содержание метана. Можно сказать иначе: начало заметного выделения летучих начинается примерно при указанных выше температурах.


Рис 2. Гипотетическая структура угля (вверху). Связи (А) с малой энергией разрыва. Термическое разрушение гипотетической молекулы угля (внизу)


На Рис. 3 [21] показаны потери массы пробы угля на основе термографических исследований. Хорошо видно, что заметному выделению летучих в области температур 350—450° C, предшествует небольшое выделение летучих начиная с температур даже ниже 50° C. К моменту прогрева до температуры 100—150° C уголь уже потерял 2—3% массы.


Рис 3. Потеря веса пробы угля при повышении температуры вследствие выхода из угля летучих газов по данным ДТА [21]


Какая газовая атмосфера образуется вокруг мелкого угля при потере массы 2—3% в процессе выделения летучих?


Таблица 1. Показывает, что уже при 1% выделения летучих уголь будет полностью окутан оболочкой из горючего газа. Этот факт является базовым основанием для механизма воспламенения и горения угольных частиц, который рассмотрен ниже.


Таблица 1. Объем выделившихся горючих газов из 1м3 мелкого угля с насыпной плотностью 800 кг/м3


Во-вторых из угля выделяется не только метан. Газ, для упрощения записываемый как «метан», имеет в своем составе также С2Н6 – этан, С2Н4 -этилен, С3Н8 – пропан, С4Н10 – бутан, С5Н12 – пентан, С6Н14 – гексан.

Летучие газы, выделяющиеся из угля могут иметь различный состав, меняющийся в зависимости от условий и времени от начала процесса выделения летучих. При этом метан вовсе не всегда будет преобладающим газом. Например анализ [20] углеводородов в шахтных газах показал 29% этана, 60% пропана и только 10% метана.

«Как известно, ископаемые угли относятся к своеобразному классу природных сорбентов, которые получили название «молекулярных сит». Для них характерна пористая структура с преобладанием главным образом микропор диаметром 1,0—1,5 нм. Поэтому скорость свободной десорбции из угля последовательно снижается от СН4 к его гомологам, т.к. диаметр молекул в ряду СН4—С5Н12 возрастает от 0,42 до 0,8 нм. Это объясняется двумя процессами: возрастанием энергий дисперсионного взаимодействия молекул гомологов метана с молекулами сорбента при объемном заполнении микропор и проявлением молекулярно-ситового эффекта в микропорах угля.

Высшие гомологи метана в основном начинают выделяться из угля после его измельчения и нагрева. При вскрытии угольных пластов и снижении давления происходит последовательное выделение углеводородов из углей в соответствии с их сорбционными свойствами. Метан, как наиболее подвижный компонент, опережает другие, более тяжелые углеводороды (УВ), которые начинают выделяться после истечения из пласта основной доли метана. Этим можно объяснить, что в свободно выделяемых из углей газах наблюдаются низкие концентрации тяжелых УВ, которые остаются в угле как трудно выделяемые.» [22]

Рекомендации по проектированию безопасных установок для сушки угля. Оборудование. Примеры. Анализ ошибок

Подняться наверх