Читать книгу Homo Sapiens. Краткая история эволюции человечества - Эдвард Норберт - Страница 5
Часть первая
Вводная, или околоэволюционная
Глава третья
Митохондриальная Ева и y-хромосомный Адам
ОглавлениеА теперь давайте перейдем от теории к практике и посмотрим, какую пользу для изучения и понимания эволюционного процесса может дать генетика. Кстати говоря, эволюцию можно рассматривать как борьбу генов за выживание. У каждого организма существует одна-единственная биологическая цель – оставить как можно больше потомства, то есть – максимально растиражировать свои гены.
ДНК каждого организма уникальна и неповторима. Об этом знают даже люди, абсолютно далекие от генетики и биологии. Криминалисты в современных детективах не столько сравнивают отпечатки пальцев, сколько исследуют ДНК. А предусмотрительные преступники, отправляясь на дело, одеваются как хирурги перед операцией. Раньше им хватало перчаток, а теперь нельзя оставить на месте преступления ни волоса, ни капли крови, ни окурка, смоченного слюной… Жизнь преступников стала тяжелее, жизнь криминалистов стала интереснее, но интереснее всего стало нам, читателям и зрителям. Данные, полученные при анализе чьей-то ДНК, способны повернуть сюжет в совершенно неожиданную сторону или же закрутить его так лихо, что просто голова кругом пойдет…
С современниками и их ДНК все ясно и просто – взяли материал, да исследовали его. Но разве можно исследовать ДНК наших далеких предков и вообще ДНК организмов, умерших много-много лет назад? Ведь молекулы со временем разрушаются и чем больше молекула, тем масштабнее эти разрушения…
Да – молекулы со временем разрушаются, но из любого биологического материала, хотя бы из крохотного обломка кости или волоса, можно выделить ДНК, целые молекулы или их фрагменты. Волосы – это любимый материал генетиков. Они медленно разлагаются, и поэтому ДНК в них хорошо сохраняется. А еще волосы имеют гидрофобную поверхность, что позволяет хорошо отмывать их перед исследованием от грязи, содержащей постороннюю ДНК. «Консервации» ДНК способствуют такие факторы, как низкая влажность окружающей среды, низкие температуры и высокие концентрации некоторых солей. Разумеется, из останков, пролежавших в земле пятьдесят или сто тысяч лет, целых молекул ДНК получить невозможно, можно выделить только фрагменты, но по фрагментам можно достоверно воссоздать целое, у ученых есть такая возможность. А можно и не воссоздавать молекулу целиком, изучать только фрагменты, которые сами по себе дают много ценной информации. При помощи прибора, называемого амплификатором, исследователи могут создать необходимое количество копий исследуемых фрагментов или целых молекул. Часть ДНК обязательно сохраняется в специальных хранилищах, которые называются ДНК-библиотеками. Это делается для того, чтобы иметь материал для сравнения.
Возможности у современных генетиков поистине безграничные. Они даже способны обходиться без останков – ДНК можно получать из осадочных пород! В этих породах много разной ДНК намешано, но есть способы различать ДНК по видовой принадлежности и по возрасту. Можно надеяться на то, что исследование ДНК в осадочных породах рано или поздно позволит создать полную картину развития жизни на нашей планете. Станет точно известно, когда и где кто жил, раскроются все тайны эволюции.
До раскрытия всех тайн пока еще далеко, но и на сегодняшний день генетикам удалось многое сделать. Так, например, полностью воссоздан геном древней лошади, жившей примерно 700 000 лет назад, и, как уже было сказано выше, полностью установлен филогенетический ряд лошади.
Исследование ДНК современного человека и неандертальца доказало, что неандертальцы не являются нашими предками! Да, представьте себе – не являются. Наши пути, то есть пути наших предков и неандертальцев, разошлись примерно 300 000–400 000 лет назад. А еще установлено, что неандертальцы скрещивались с неафриканскими популяциями современных людей. Об этом свидетельствует неандертальская «примесь» в нашей ДНК.
По ходу нашего разговора мы не раз станем вспоминать о генах и генетических исследованиях. А сейчас давайте приступим к «расшифровке» заголовка этой главы. Кто такие Адам и Ева, объяснять не нужно, но почему Ева вдруг стала митохондриальной, а Адам – Y-хромосомным?
В митохондриях, маленьких клеточных энергетических станциях, как вы уже знаете, содержится своя митохондриальная ДНК. Этот вид ДНК наследуется только по материнской линии, поскольку отцовские митохондрии потомку не передаются. Сперматозоид представляет собой средство доставки ядерной ДНК к яйцеклетке. Подобно космическому кораблю, он должен быть предельно легким, ведь чем меньше вес, тем выше скорость. Размеры сперматозоидов у всех животных микроскопические. Наиболее крупные сперматозоиды у тритона, их длина составляет около 500 микрометров, а длина сперматозоидов человека варьирует в пределах 52–70 микрометров.
Строение сперматозоида
Маленькая головка, в которой кроме ядра (ДНК) практически ничего больше нет, коротенькая шейка с митохондриямии, длинный-предлинный хвост, выполняющий роль двигателя, вот что такое сперматозоид. Митохондрии нужны для обеспечения хвоста энергией, иначе бы их в шейке не было. Во время оплодотворения в яйцеклетку проникает только головка сперматозоида, шейка с хвостом остаются снаружи.
Чем меньше молекула, тем удобнее с ней работать исследователям. Молекулы митохондриальной ДНК относительно невелики. В нашей митохондриальной ДНК содержится «всего-навсего» 37 генов. Для сравнения, в молекулах ядерной ДНК счет генам идет на сотни или на тысячи. 13 митохондриальных генов кодируют синтез белков, служащих ферментами для проходящих в митохондриях химических реакций, а остальные гены кодируют синтез различных РНК.
Поскольку молекула митохондриальной ДНК во много раз короче молекулы ядерной ДНК, то митохондриальная ДНК лучше сохраняется в останках и при повреждениях ее проще восстанавливать. Да, разумеется, ядерная ДНК может дать гораздо больше информации, но приходится работать с тем, что есть. Как говорится – лучше синица в руках, чем журавль в небе, то есть лучше целая молекула митохондриальной ДНК, чем несколько коротеньких «невосстановимых» фрагментов ядерной ДНК.
Еще одно «преимущество» митохондриальной ДНК с исследовательской точки зрения заключается в ее количестве. В каждой митохондрии млекопитающих содержится от двух до десяти полностью идентичных молекул ДНК. А в клетке митохондрий от нескольких сотен до двух тысяч. Чем больше энергии нужно органу для жизнедеятельности, тем больше в нем митохондрий. Наибольшее их количество содержится в скелетных мышцах, сердце и головном мозге.
Если мы умножим 5 (среднее количество молекул ДНК в одной митохондрии) на 500 (условное, близкое к минимальному, количество митохондрий в клетке), то получим 2500 молекул ДНКв одной клетке. Сравните это количество с 46 молекулами ядерной ДНК.
Маленькие молекулы митохондриальной ДНК столь же индивидуальны, что и молекулы ядерной ДНК. Совпадение митохондриальной ДНК у разных людей полностью исключено.
Митохондриальной Евой называют женщину, жившую в Африке около 200 000 лет назад и являющуюся праматерью всего современного человечества.
Повторим еще раз – являющуюся праматерью всего современного человечества. Всего! Генетика неопровержимо доказала, что все мы – братья и сестры.
Создатель гипотезы о митохондриальной Еве американский биолог и биохимик Аллан Чарльз Вильсон дал нашей праматери другое имя. Он назвал ее «Удачливой мамой» (Lucky Mother), однако это «легкомысленное» имя в науке не прижилось.
Как такое могло произойти? У митохондриальной Евы было множество современниц, но почему их потомки не дожили до наших дней?
Вообще-то дожили, если уж говорить начистоту. Современницы Евы могли оставить свой след в нашей ядерной ДНК и оставили его, передав нам свои гены не по прямой женской линии, а через сыновей, внуков, правнуков и т. д., то есть через наших предков мужского пола. Но митохондриальная ДНК всего человечества исходит от одной женщины.
Необходимое уточнение – митохондриальная Ева и Y-хромосомный Адам представляют собой научные абстракции, но ключевое слово здесь «научные». Они не выявлены путем анализа ДНК по их останкам, а «выведены» посредством математических расчетов.
Доминирование потомства митохондриальной Евы
Для того, чтобы получить наглядное представление о том, как такое могло произойти, и не углубляться в математику, вы можете посмотреть на рисунок. Если же хочется углубиться, то давайте представим, что существует некая группа (популяция) с постоянной численностью людей. Одно и то же число особей из поколения в поколение нужно для упрощения, так будет удобнее. Но эту модель можно перенести и на популяцию с постоянно увеличивающейся численностью особей, только в таком случае для полного доминирования одной митохондриальной ДНК потребуется большее число поколений.
Женщина может иметь потомство, а может и не иметь. В потомстве могут быть как женщины – «передатчики» митохондриальной ДНК, так и мужчины, которые ее передавать не могут. Некоторые потомки выживут и дадут свое потомство, а некоторые не выживут. Для того, чтобы число людей в популяции не изменялось, мы станем считать, что в каждом поколении у пары родителей выживает двое детей.
Брачные пары внутри рассматриваемой популяции составляются случайным образом, любой самец может с одинаковой вероятностью составить пару с любой самкой. Никаких изолированных групп в нашей популяции нет.
У каждой отдельной особи из нулевого поколения в первом поколении будет по два потомка, во втором – четыре, в третьем – восемь правнуков. До тех пор, пока потомки одной особи не начнут скрещиваться друг с другом, число их будет расти как 2 в степени N, где N равно числу поколений. Если популяция достаточно велика, то после начала родственных скрещиваний скорость роста численности потомков одной особи снизится ненамного.
В каждом поколении разнообразие митохондриальной ДНК несколько уменьшается, потому что какие-то женщины остаются бездетными, или не рожают дочерей, или их дочери не доживают до репродуктивного возраста. Разнообразия все меньше и меньше, и вот однажды придет поколение, каждый представитель которого будет связан прямым родством по непрерывной женской линии с одной из особей нулевого поколения. Миграция больших групп людей, а также разделение и слияние популяций влияют на число поколений, необходимое для абсолютного доминирования одной митохондриальной ДНК, но не отменяют этого процесса.
Если предельно упростить, так, что дальше просто некуда, то можно смоделировать происходящее следующим образом. Положите в какую-либо емкость некоторое количество теннисных шариков, горошин, конфет или орехов, короче говоря – одинаковых предметов. Встряхните емкость и достаньте из нее один предмет, символизирующий митохондриальную ДНК, «ушедшую» в этом поколении. Повторите процесс и делайте это до тех пор, пока в емкости не останется всего один предмет – митохондриальная ДНК праматери нашей Евы.
С Y-хромосомным Адамом дело обстоит еще проще, то есть потомство одного отца по непрерывной мужской линии начинает доминировать раньше, поскольку в разных культурах в разные периоды присутствует многоженство. В ситуации, когда один мужчина может оставить десятки, а то и сотни потомков, Y-хромосомы будут вытеснять друг друга быстрей, чем разные варианты митохондриальной ДНК.
Время, в которое жили Y-хромосомный Адам и митохондриальная Ева, постоянно изменяется – очередная порция данных (добытого генетического материала) вносит свои коррективы. Но в любом случае Адам выходит моложе Евы. В настоящее время считается, что Адам жил примерно 130 000 лет назад.
Сам собой напрашивается вопрос о том, как ученым удается высчитывать возраст обнаруженной ДНК?
Во-первых, существует много «негенетических» способов определения возраста ископаемых останков или какой-либо иной органики. Наиболее распространенным и очень достоверным методом является радиоуглеродный анализ, определяющий содержание радиоактивного углерода C-14 в находках органического происхождения. Все живые организмы, как животные, так и растения, поглощают из атмосферы углерод, преимущественно обычный, нерадиоактивный. Но вместе с обычным организмы также усваивают небольшие количества радиоактивного углерода-14, который, подобно всем радиоактивным элементам, имеет способность к распаду. Период полураспада 14C, то есть время, за которое количество этого вещества уменьшается наполовину, составляет примерно 5700 лет. Сравнивая содержание изотопа 14C в ископаемых останках с его содержанием в организме живого человека, можно достоверно определить возраст останков. Останки, которые «старше» 100 000 лет, исследуются на содержание других изотопов, например бериллия-10 с периодом полураспада в 1 500 000 лет.
Метод, который применяют генетики, отчасти схож с радиоизотопным, только оценивается не количество какого-либо вещества, а количество мутаций в молекуле ДНК. Этот метод называется методом молекулярных часов. Зная среднюю скорость мутации в ДНК данного биологического вида, можно определить возраст древней ДНК, ядерной или митохондриальной, по количеству ее отличий от современной ДНК.
Одним лишь определением возраста находок дело не ограничивается. Сравнительный анализ ДНК дает информацию о направлениях и времени миграции того или иного биологического вида. Если на территории Западной Европы обнаруживается человеческая ДНК, имеющая выраженное сходство с ДНК, обнаруженной в Восточной Африке, но более «молодая», то это свидетельствует о миграции наших предков из Африки в Европу.
Вам нужно знать точное время «великого переселения»? Вернее – относительно точное, поскольку погрешность в несколько сотен лет в этом вопросе допустима. Без проблем! Найдите в европейской ДНК мутацию, которой нет в африканской ДНК, и определите время ее возникновения по методу молекулярных часов. А затем подкрепите результат при помощи еще нескольких мутаций.