Читать книгу A History of Science - Volume 3 - Edward Huntington Williams - Страница 5
CONTENTS
ОглавлениеBOOK III
CHAPTER I. THE SUCCESSORS OF NEWTON IN ASTRONOMY
The work of Johannes Hevelius—Halley and Hevelius—Halley's observation
of the transit of Mercury, and his method of determining the parallax of
the planets—Halley's observation of meteors—His inability to
explain these bodies—The important work of James Bradley—Lacaille's
measurement of the arc of the meridian—The determination of the
question as to the exact shape of the earth—D'Alembert and his
influence upon science—Delambre's History of Astronomy—The
astronomical work of Euler.
CHAPTER II. THE PROGRESS OF MODERN ASTRONOMY
The work of William Herschel—His discovery of Uranus—His discovery
that the stars are suns—His conception of the universe—His deduction
that gravitation has caused the grouping of the heavenly bodies—The
nebula, hypothesis,—Immanuel Kant's conception of the formation of the
world—Defects in Kant's conception—Laplace's final solution of the
problem—His explanation in detail—Change in the mental attitude of the
world since Bruno—Asteroids and satellites—Discoveries of Olbersl—The
mathematical calculations of Adams and Leverrier—The discovery of the
inner ring of Saturn—Clerk Maxwell's paper on the stability of Saturn's
rings—Helmholtz's conception of the action of tidal friction—Professor
G. H. Darwin's estimate of the consequences of tidal action—Comets
and meteors—Bredichin's cometary theory—The final solution of the
structure of comets—Newcomb's estimate of the amount of cometary dust
swept up daily by the earth—The fixed stars—John Herschel's studies
of double stars—Fraunhofer's perfection of the refracting
telescope—Bessel's measurement of the parallax of a star,—Henderson's
measurements—Kirchhoff and Bunsen's perfection of the
spectroscope—Wonderful revelations of the spectroscope—Lord Kelvin's
estimate of the time that will be required for the earth to become
completely cooled—Alvan Clark's discovery of the companion star of
Sirius—The advent of the photographic film in astronomy—Dr. Huggins's
studies of nebulae—Sir Norman Lockyer's "cosmogonic guess,"—Croll's
pre-nebular theory.
CHAPTER III. THE NEW SCIENCE OF PALEONTOLOGY
William Smith and fossil shells—His discovery that fossil rocks are
arranged in regular systems—Smith's inquiries taken up by Cuvier—His
Ossements Fossiles containing the first description of hairy
elephant—His contention that fossils represent extinct species
only—Dr. Buckland's studies of English fossil-beds—Charles Lyell
combats catastrophism,—Elaboration of his ideas with reference to
the rotation of species—The establishment of the doctrine of
uniformitarianism,—Darwin's Origin of Species—Fossil man—Dr.
Falconer's visit to the fossil-beds in the valley of the
Somme—Investigations of Prestwich and Sir John Evans—Discovery of the
Neanderthal skull,—Cuvier's rejection of human fossils—The finding
of prehistoric carving on ivory—The fossil-beds of America—Professor
Marsh's paper on the fossil horses in America—The Warren mastodon,—The
Java fossil, Pithecanthropus Erectus.
CHAPTER IV. THE ORIGIN AND DEVELOPMENT OF MODERN GEOLOGY
James Hutton and the study of the rocks—His theory of the earth—His
belief in volcanic cataclysms in raising and forming the continents—His
famous paper before the Royal Society of Edinburgh, 1781—-His
conclusions that all strata of the earth have their origin at the bottom
of the sea—-His deduction that heated and expanded matter caused the
elevation of land above the sea-level—Indifference at first shown this
remarkable paper—Neptunists versus Plutonists—Scrope's classical work
on volcanoes—Final acceptance of Hutton's explanation of the origin
of granites—Lyell and uniformitarianism—Observations on the gradual
elevation of the coast-lines of Sweden and Patagonia—Observations on
the enormous amount of land erosion constantly taking place,—Agassiz
and the glacial theory—Perraudin the chamois-hunter, and his
explanation of perched bowlders—De Charpentier's acceptance of
Perraudin's explanation—Agassiz's paper on his Alpine studies—His
conclusion that the Alps were once covered with an ice-sheet—Final
acceptance of the glacial theory—The geological ages—The work of
Murchison and Sedgwick—Formation of the American continents—Past,
present, and future.
CHAPTER V. THE NEW SCIENCE OF METEOROLOGY
Biot's investigations of meteors—The observations of Brandes and
Benzenberg on the velocity of falling stars—Professor Olmstead's
observations on the meteoric shower of 1833—Confirmation of Chladni's
hypothesis of 1794—The aurora borealis—Franklin's suggestion that
it is of electrical origin—Its close association with terrestrial
magnetism—Evaporation, cloud-formation, and dew—Dalton's demonstration
that water exists in the air as an independent gas—Hutton's theory of
rain—Luke Howard's paper on clouds—Observations on dew, by Professor
Wilson and Mr. Six—Dr. Wells's essay on dew—His observations
on several appearances connected with dew—Isotherms and ocean
currents—Humboldt and the-science of comparative climatology—His
studies of ocean currents—Maury's theory that gravity is the cause
of ocean currents—Dr. Croll on Climate and Time—Cyclones and
anti-cyclones,—Dove's studies in climatology—Professor Ferrel's
mathematical law of the deflection of winds—Tyndall's estimate of
the amount of heat given off by the liberation of a pound of
vapor—Meteorological observations and weather predictions.
CHAPTER VI. MODERN THEORIES OF HEAT AND LIGHT
Josiah Wedgwood and the clay pyrometer—Count Rumford and the vibratory
theory of heat—His experiments with boring cannon to determine the
nature of heat—Causing water to boil by the friction of the borer—His
final determination that heat is a form of motion—Thomas Young and the
wave theory of light—His paper on the theory of light and colors—His
exposition of the colors of thin plates—Of the colors of thick
plates, and of striated surfaces,—Arago and Fresnel champion the wave
theory—opposition to the theory by Biot—The French Academy's tacit
acceptance of the correctness of the theory by its admission of Fresnel
as a member.
CHAPTER VII. THE MODERN DEVELOPMENT OF ELECTRICITY AND MAGNETISM
Galvani and the beginning of modern electricity—The construction of
the voltaic pile—Nicholson's and Carlisle's discovery that the galvanic
current decomposes water—Decomposition of various substances by Sir
Humphry Davy—His construction of an arc-light—The deflection of the
magnetic needle by electricity demonstrated by Oersted—Effect of
this important discovery—Ampere creates the science of
electro-dynamics—Joseph Henry's studies of electromagnets—Michael
Faraday begins his studies of electromagnetic induction—His famous
paper before the Royal Society, in 1831, in which he demonstrates
electro-magnetic induction—His explanation of Arago's
rotating disk—The search for a satisfactory method of storing
electricity—Roentgen rays, or X-rays.
CHAPTER VIII. THE CONSERVATION OF ENERGY
Faraday narrowly misses the discovery of the doctrine of
conservation—Carnot's belief that a definite quantity of work can be
transformed into a definite quantity of heat—The work of James Prescott
Joule—Investigations begun by Dr. Mayer—Mayer's paper of 1842—His
statement of the law of the conservation of energy—Mayer and
Helmholtz—Joule's paper of 1843—Joule or Mayer—Lord Kelvin and the
dissipation of energy-The final unification.
CHAPTER IX. THE ETHER AND PONDERABLE MATTER
James Clerk-Maxwell's conception of ether—Thomas Young and
"Luminiferous ether,"—Young's and Fresnel's conception of transverse
luminiferous undulations—Faraday's experiments pointing to the
existence of ether—Professor Lodge's suggestion of two ethers—Lord
Kelvin's calculation of the probable density of ether—The vortex theory
of atoms—Helmholtz's calculations in vortex motions—Professor
Tait's apparatus for creating vortex rings in the air—-The ultimate
constitution of matter as conceived by Boscovich—Davy's speculations
as to the changes that occur in the substance of matter at different
temperatures—Clausius's and Maxwell's investigations of the
kinetic theory of gases—Lord Kelvin's estimate of the size of the
molecule—Studies of the potential energy of molecules—Action of gases
at low temperatures.
APPENDIX