Читать книгу The Biotic Associations of Cockroaches - Edwin R. Willis - Страница 350
STRUCTURAL HABITATS
ОглавлениеIn this category we include all man-made structures, whether inhabited by man or not, that may become infested with cockroaches. A nonexhaustive list of such structures would include dwellings, restaurants, mess halls, barracks, groceries, markets, bakeries, dairies, drug stores, department stores, hotels, hospitals, warehouses, mills, factories, packing houses, animal houses, breweries, incinerators, privies, sewers, sewage treatment plants, ships, aircraft, etc. Although dwellings are only one of the many kinds of structures that are colonized by cockroaches, the several species that have adopted this mode of life are generally referred to as domiciliary cockroaches. This term is adequate only if we remember that these cockroaches are not restricted to domiciles but are pests in other structures as well.
Associations between man and certain species of cockroaches possibly started as casually as the short-lived association that Beebe (1953) observed when he discovered three cockroaches in the newly built couch of an orang-utan. Obviously, when man came down from the trees, his fellow travelers found his cave dwellings and other abodes particularly favorable habitats. From such primitive beginnings, domiciliary cockroaches have spread into every kind of structure that man has since devised. We predict that when man develops a suitable vehicle, cockroaches will someday accompany him into space. Yet despite the apparent predilection of certain species of cockroaches for man, man is only incidental to these associations. Only the shelter and food that man unwittingly provides for these unwelcome guests attract cockroaches to him; man's physical presence is unnecessary.
Most, if not all, of the common domiciliary cockroaches apparently originated in the Tropics or sub-Tropics from whence they have spread, through normal commercial channels, into most of the inhabited world. At least eight domiciliary cockroaches originated in Africa (Rehn, 1945): Blatta orientalis, Blattella germanica, Leucophaea maderae, Nauphoeta cinerea, Oxyhaloa buprestoides, Periplaneta americana, P. australasiae, and Supella supellectilium; and, perhaps, Periplaneta brunnea as well; Neostylopyga rhombifolia was probably of Indo-Malayan origin; Pycnoscelus surinamensis was of oriental origin; and Leurolestes pallidus was endemic in the West Indies (Rehn, 1945). Princis (1954a) rejected Africa as the original home of Blatta orientalis and advanced reasons for placing its origin in Central Asia.
Several domiciliary species have become well established in temperate zones and some even in the Arctic. Bei-Bienko (1950) listed the following 10 species as sinanthropes in the Palearctic zone: Blatta lateralis, B. orientalis, Blattella germanica, Leucophaea maderae, Periplaneta americana, P. australasiae, Polyphaga saussurei, Pycnoscelus surinamensis, and Supella supellectilium. In the warmer parts of the temperate regions, as in their native Tropics, certain domiciliary species breed outdoors as well as indoors. In the less temperate extensions of their ranges most domiciliary species are nearly always found indoors. In regions with low winter temperatures these cockroaches do not survive in unheated structures; but in heated buildings Blattella germanica, for example, has been able to withstand the rigorous climate of Alaska, where it has caused severe infestations (Chamberlin, 1949).
The limiting factors that determine whether man-made structures will provide suitable habitats for cockroaches are favorable temperature and availability of water and food. The range of temperatures that man provides for his own comfort and protection fosters the rapid increase of cockroach populations indoors. Gunn (1934, 1935) has demonstrated that the preferred temperature range (zone of indifference) of Blatta orientalis is 20-29° C. The upper limit of the preferred temperature of Blattella germanica and Periplaneta americana is 33° C. (Gunn, 1935). The lower limits of temperature tolerance were not sharply defined in Gunn's work. However, less than optimum temperatures, if they last for only short periods, are not necessarily lethal. The 24-hour mortality for P. americana that had been held for one hour at 0° C. was only 2±2 percent (Knipling and Sullivan, 1957). Gunn (1934) observed that Blatta orientalis would not settle at temperatures above 33° C. and would react violently against higher temperatures (e.g., 39° C.) by running away; thus the thermotactic behavior of cockroaches might be presumed to bring them into favorable environments within structures. Thermal death points have been determined for the above three species by Gunn and Notley (1936).
It is common knowledge among those who rear cockroaches experimentally that, unless the water content of the food is high, fluid water is essential in the insects' dietary. Ten species of domiciliary cockroaches have been shown to be unable to survive as long on dry food alone as they could on food and water at 36-40 percent relative humidity (Willis and Lewis, 1957). Blatta orientalis, when in a state of normal water balance, usually spent more time in the drier part of a humidity gradient; but desiccated insects tended to become hygropositive (Gunn and Cosway, 1938). We presume that other domiciliary species behave similarly. If water is available nearby, it may be presumed that partially desiccated cockroaches could locate a source through the mediation of a humidity sense. Hygroreceptors have been demonstrated on the antennae of Blattella germanica (Roth and Willis, 1952a) and suggested for Blatta orientalis (Gunn and Cosway, 1938).
Drinking water is available to cockroaches in the traps of sinks, wash basins, tubs, and toilet bowls; in flush tanks; as condensation on cold pipes, flush tanks, and windows; around leaking pipes and faucets; as spillage; in miscellaneous water-filled containers, such as pet drinking dishes, aquaria, vases; empty beverage bottles; and drainage from ice boxes. Soft, juicy fruits and vegetables can provide both moisture and food. There seems to be a tendency for certain species (Blatta orientalis and Blattella germanica) to become established in the more humid parts of structures, such as basements, around sinks, and in bathrooms. Whether this is a reaction to a preferred humidity or merely a fortuitous aggregation near sources of drinking water and food has never been clearly demonstrated. The rather widespread dissemination of these species into zones of low as well as high humidity suggests that detailed studies of the microclimatic conditions of structural microhabitats will be needed before meaningful conclusions can be drawn about the stratification of cockroaches within structures according to species.
In nearly all structures infested by cockroaches, food of some kind is available, either in the structure itself or nearby. This may be the food stored by man for his own use or the use of kept animals; it may be crumbs, food spillage, garbage, or excreta; glues and pastes on cartons, boxes, stamps, envelopes, labels, and wall paper; sizing on cloth and book covers; various dried animal and plant products; dead insects; living plants; etc. In fact, it is almost impossible, despite good housekeeping, to keep any structure used by man free of all food suitable for cockroaches.
That the requisite temperature, water, and food are provided, more or less adequately, by a variety of structures is attested by the innumerable infestations of cockroaches that develop when control measures are relaxed. Within structures the accessibility of certain harborages to cockroaches probably depends on the habits of the species and to some extent on their size. Similar types of harborages in different structures may be used by the same species, although there seems to be some overlapping by different species into the same kinds of daytime shelters. The comparative ecology of domiciliary cockroaches has not been thoroughly investigated, so any interpretation of observational data is necessarily speculative and inconclusive at this time. Our discussion on pages 324 to 343 is also pertinent to this section.