Читать книгу Multi-parametric Optimization and Control - Efstratios N. Pistikopoulos - Страница 2
Table of Contents
Оглавление1 Cover
6 Short Bios of the Authors Efstratios N. Pistikopoulos Nikolaos A. Diangelakis Richard Oberdieck
7 Preface
8 Part I Multi‐parametric Optimization 1 Introduction 1.1 Concepts of Optimization 1.2 Concepts of Multi‐parametric Programming 1.3 Polytopes 1.4 Organization of the Book References Notes 2 Multi‐parametric Linear Programming 2.1 Solution Properties 2.2 Degeneracy 2.3 Critical Region Definition 2.4 An Example: Chicago to Topeka 2.5 Literature Review References Notes 3 Multi‐Parametric Quadratic Programming 3.1 Calculation of the Parametric Solution 3.2 Solution Properties 3.3 Chicago to Topeka with Quadratic Distance Cost 3.4 Literature Review References Notes 4 Solution Strategies for mp‐LP and mp‐QP Problems 4.1 General Overview 4.2 The Geometrical Approach 4.3 The Combinatorial Approach 4.4 The Connected‐Graph Approach 4.5 Discussion 4.6 Literature Review References Notes 5 Multi‐parametric Mixed‐integer Linear Programming 5.1 Solution Properties 5.2 Comparing the Solutions from Different mp‐LP Problems 5.3 Multi‐parametric Integer Linear Programming 5.4 Chicago to Topeka Featuring a Purchase Decision 5.5 Literature Review References Notes 6 Multi‐parametric Mixed‐integer Quadratic Programming 6.1 Solution Properties 6.2 Comparing the Solutions from Different mp‐QP Problems 6.3 Envelope of Solutions 6.4 Chicago to Topeka Featuring Quadratic Cost and A Purchase Decision 6.5 Literature Review References Notes 7 Solution Strategies for mp‐MILP and mp‐MIQP Problems 7.1 General Framework 7.2 Global Optimization 7.3 Branch‐and‐Bound 7.4 Exhaustive Enumeration 7.5 The Comparison Procedure 7.6 Discussion 7.7 Literature Review References Notes 8 Solving Multi‐parametric Programming Problems Using MATLAB® 8.1 An Overview over the Functionalities of POP 8.2 Problem Solution 8.3 Problem Generation 8.4 Problem Library 8.5 Graphical User Interface (GUI) 8.6 Computational Performance for Test Sets 8.7 Discussion Acknowledgments References Notes 9 Other Developments in Multi‐parametric Optimization 9.1 Multi‐parametric Nonlinear Programming 9.2 Dynamic Programming via Multi‐parametric Programming 9.3 Multi‐parametric Linear Complementarity Problem 9.4 Inverse Multi‐parametric Programming 9.5 Bilevel Programming Using Multi‐parametric Programming 9.6 Multi‐parametric Multi‐objective Optimization References Notes
9 Part II Multi‐parametric Model Predictive Control 10 Multi‐parametric/Explicit Model Predictive Control 10.1 Introduction 10.2 From Transfer Functions to Discrete Time State‐Space Models 10.3 From Discrete Time State‐Space Models to Multi‐parametric Programming 10.4 Explicit LQR – An Example of mp‐MPC 10.5 Size of the Solution and Online Computational Effort References Notes 11 Extensions to Other Classes of Problems 11.1 Hybrid Explicit MPC 11.2 Disturbance Rejection 11.3 Reference Trajectory Tracking 11.4 Moving Horizon Estimation 11.5 Other Developments in Explicit MPC References Notes 12 PAROC: PARametric Optimization and Control 12.1 Introduction 12.2 The PAROC Framework 12.3 Case Study: Distillation Column 12.4 Case Study: Simple Buffer Tank 12.5 The Tank Example 12.6 Concluding Remarks References Notes
10 AAppendix for the mp‐MPC Chapter 10
11 Appendix for the mp‐MPC Chapter 11 B.1 Matrices for the mp‐QP Problem Corresponding to the Example of Section 11.3.2
12 Index