Читать книгу Glasschäden - Ekkehard Wagner - Страница 6

Оглавление

Teil 1 Glas –

Definition und Aufbau

1.1 Definition und Aufbau

Zur Beurteilung von Glasschäden ist die Kenntnis des Glasaufbaus immer hilfreich. Allerdings kann die einfache Frage „Was ist Glas?“ nicht leicht beantwortet werden. Das Wort Glas leitet sich ursprünglich aus dem germanischen Wort glasa ab, was so viel bedeutet, wie „das Glänzende, das Schimmernde“. Die Germanen verwendeten das Wort auch für die Bezeichnung von Bernstein. Bereits 1779 schrieb D. Johann Georg Krünitz in der oeconomischen Encyclopedie:

„Glas (das) ein jeder glänzender Körper. In dieser weiteren Bedeutung war es ehedem gewöhnlich, verschiedene Körper dieser Art zu bezeichnen. Dass die alten Deutschen den Bernstein Glas genannt haben, erhellet aus dem Tacitus und Plinius. Die alten Schweden nannten das Gold Gliis, Gläs, Bargläses, so wie die Phrygier aus eben dieser Ursache Gleros, Gliros. Auch das lateinische Glacies, Eis, gehört hierher. Im Deutschen kommt diese Bedeutung nur noch in den Zusammensetzungen Glaserz, Glaskopf, Spießglas usw. vor, wo es so viel wie Glanz bedeutet.“

Weiterhin steht dort zu lesen:

„Glas in der engsten Bedeutung, ein aus Sand oder Kieseln mit einem Alkali und Salz zusammengeschmelzter durchsichtiger glänzender Körper, welcher im gemeinen Leben zu mancherley Bedürfnissen gebraucht wird.“ [19]

Ein einfacher Definitionsversuch zeigt im Nachfolgenden mehrere Möglichkeiten auf:

Eine Beurteilung der Substanz Glas nach ihrer Zusammensetzung kann relativ einfach dargestellt werden: Glas besteht aus Sand (Netzwerkbildner), aus Soda (Netzwerkwandler/Flussmittel) und aus Kalk (Stabilisator). Das Zusammenwirken dieser drei Substanzen erläutert die nachfolgende Modellbeschreibung, die der Einfachheit halber zweidimensional dargestellt wurde: Die Einschmelzung von reinem Sand, der überwiegend aus Siliziumdioxid (Kieselsäure) besteht, geschieht bei sehr hohen Temperaturen (> 1.800 °C). Siliziumdioxid SiO2 ist in kristalliner Form als Quarz-Kristall bekannt, die Moleküle sind symmetrisch angeordnet, wie dies bei Kristallen üblich ist.


Quarzkristall;

Anmerkung: Die vierten

Valenzen des Si ragen jeweils nach oben oder unten aus der Zeichnungsebene heraus, da eine einfache und übersichtliche Darstellung nur zweidimensional möglich ist.

Bei den hohen Temperaturen der Einschmelzung von Sand entsteht ein unregelmäßiges Schmelzgefüge von vernetzten Siliziumdioxidmolekülen. Das hierbei entstehende Schmelzprodukt bezeichnet man als Quarzglas.


Quarzglas;

Anmerkung: Die vierten

Valenzen des Si ragen jeweils nach oben oder unten aus der Zeichnungsebene heraus, da eine einfache und übersichtliche Darstellung nur zweidimensional möglich ist.

Um einen wesentlich niedrigeren Schmelzpunkt zu erreichen und damit den Herstellungsprozess ökonomischer zu gestalten, wird Soda beigemischt und verschmolzen. Soda (Natriumkarbonat Na2CO3) als so genannter Netzwerkwandler spaltet die Netzwerkbindungen zwischen den einzelnen Siliziummolekülen und sorgt so für einen wesentlich niedrigeren Schmelzpunkt des Quarzsandes. Als Endprodukt entsteht eine Flüssigkeit namens Wasserglas, die früher zum Beispiel im Brandschutzbereich (Anstrich bei Holzdächern) verwendet wurde.

Spaltung zu Wasserglas



Wasserglas;

Anmerkung: Die vierten

Valenzen des Si ragen jeweils nach oben oder unten aus der Zeichnungsebene heraus, da eine einfache und übersichtliche Darstellung nur zweidimensional möglich ist.

Wasserglas ist eine flüssige Substanz und hat deshalb nur wenig Ähnlichkeit mit festem Glas. Um wieder eine feste Substanz zu erhalten, aber auch zur Steuerung des Spaltungsprozesses, wird nun zusätzlich zu Sand und Soda die Substanz Kalk (Calciumkarbonat CaCO3) als Stabilisator beigemengt. Dadurch werden die gespaltenen Netzwerkverbindungen zwischen den Siliziummolekülen durch den Kalk wieder teilweise rückgängig gemacht. Nach der Erschmelzung dieser Substanzen in Abhängigkeit der Mengenzugabe des Kalkes entsteht wieder ein fester Stoff. Es handelt sich dabei um Kalk-Natronsilicatglas, das bei wesentlich niedrigeren Temperaturen ökonomischer hergestellt werden kann.

Kalk-Natronsilicatglas-Stabilisierungsprozess:



Kalk-Natronsilicatglas; Anmerkung: Die vierten Valenzen des Si ragen jeweils nach oben oder unten aus der Zeichnungsebene heraus, da eine einfache und übersichtliche Darstellung nur zweidimensional mög-lich ist.

Während des Erschmelzungsprozesses von Glas wandelt sich Natriumkarbonat in Natriumoxid und Calciumkarbonat in Calciumoxid um. Dadurch entsteht ein relativ hoher Anteil an Kohlen-dioxid (CO2), das als Gas freigesetzt wird. Im „Läuterungsprozess“ entweicht es aus der flüssigen Glasschmelze.


Zur Herstellung von Borosilicatglas wird anstelle des Sandes teilweise Natriumborat (Na2B2O4) als Netzwerkbildner verwendet. Bei Kalkkaliglas wird anstelle von Soda als Netzwerkwandler Kaliumkarbonat (K2CO3) oder auch das Doppelsalz Dolomit verwendet. Es können aber noch andere Stoffe als Netzwerkbildner fungieren, wie Bortrioxid oder nichtoxidische wie Arsensulfid.

Man kann bei Glas unterscheiden zwischen sogenannten „Hartgläsern“ wie Borosilicaten mit hohen Kühlpunkten, hoher Beständigkeit gegen chemische Angriffe, deutlich höherem Erweichungsverhalten und sehr hoher Temperaturwechselbeständigkeit und zwischen „Weichgläsern“ wie Kalk-Natronsilicatgläsern, Bleigläsern oder Nichtsilicatgläsern mit leichterer Erschmelzbarkeit und Formgebung, geringerer Temperaturwechselbeständigkeit und geringeren Herstellkosten. Diese Bezeichnungen haben allerdings nichts mit der eigentlichen Härte (Oberflächen-, Schleif-, Ritz-, Vickers- oder Mohshärte siehe Kapitel 2.3) von Glas zu tun.

Zusammenfassend kann gesagt werden, dass Glas hauptsächlich aus einem Netzwerk von Siliziummolekülen, Natriumoxid und Calciumoxid besteht. Weitere Substanzen des Glasgemenges wie Nitrate, Sulfate oder organische Substrate dienen bei der Glasherstellung als Läuterungsmittel oder als Pigmente. Sie haben keinen entscheidenden Einfluss auf die Struktur des Glases.

1.2 Weitere Definitionen von Glas

Die American Society for Testing and Material (ASTM) definiert Glas gemäß seiner Struktur als ein anorganisches Schmelzprodukt, dessen Abkühlung sich ohne wesentliche Kristallisation vollzieht und das unterhalb des Transformationspunktes einen erstarrten Zustand einnimmt.

Bei normalen Temperaturen ist Glas eine feste Flüssigkeit mit extrem hoher Viskosität und somit ein Körper mit amorpher Struktur (nicht kristallin). Dieser glasig amorphe Zustand unterscheidet sich zum kristallinen Zustand dadurch, dass die Moleküle lediglich in einer Nahordnung gebunden sind. Es fehlt ein symmetrisches und periodisches Kristallgitter.

Für Ingenieurwissenschaftler ist Glas – einfach ausgedrückt – eine eingefrorene, unterkühlte Flüssigkeit.

Strukturmechanisch betrachtet ist Glas nichts anderes als eine thermodynamisch metastabile, eingefrorene Schmelze mit einer eingeprägten, inneren Energie.

Anders als zum Beispiel beim Bergkristall besitzt Glas unterhalb des Transformationspunktes keine Möglichkeit mehr, einen geordneten kristallinen Zustand einzunehmen. Aus den vorgenannten Definitionen erkennt man, dass die Substanzen des flüssigen Glases beim Abkühlprozess bereits ab 600 °C einen erstarrten, d. h. unbeweglicheren Zustand einnehmen. Somit verharrt Glas also unter 600 °C im Aggregatzustand einer Flüssigkeit, die in diesem Ausnahmefall fest ist.

Die DIN EN 572-1 definiert Floatglas, das heute allgemein im Hochbau, Innenausbau und Automobilbau eingesetzt wird, folgendermaßen: Planes, durchsichtiges, klares oder gefärbtes Kalk-Natronsilicatglas mit parallelen und feuerpolierten Oberflächen, hergestellt durch kontinuier-liches Aufgießen und Fließen über ein Metallbad.

Einige Gemengesätze für Floatglas und für Spiegelglas zeigt die nachfolgende Tabelle 1. Daran sind die Veränderungen von der Spiegelglasproduktion aus Ziehwannen zur Floatglasproduktion erkennbar. Dieser angegebene Float-Gemengesatz variiert von Unternehmen zu Unternehmen (wie auch früher beim Spiegelglas) nach Art der verwendeten Rohstoffe. Zusätzlich werden je nach Anfall 25 % bis 60 % Scherben, vorwiegend aus der eigenen Produktion, zugesetzt. Das daraus erschmolzene Floatglas bzw. das seit den 80er Jahren bis heute verwendete Standardfloatglas hat die in Tabelle 2 angegebene Zusammensetzung (Gläser [4], Petzold [15], EN 571-1), die verfahrens- und rohstoffbedingt nur geringfügig schwankt.

Bei der Herstellung von eisenoxidarmen, „extraweißen“ Gläsern beträgt der Anteil von Eisenoxid nur noch ca. 0,005 % gegenüber ca. 0,05 bis 0,09 % bei Float- oder Spiegelglas.

Es ist auch möglich, Glas ohne Schmelzen im Sol-Gel-Prozess herzustellen, wie beispielsweise Silikat-Aerogele.

1.3 Zusammensetzung von Glas

Die verschiedenen Glasarten von reinem Quarzglas über Kalk-Natronsilicatglas, Borosilicatglas bis hin zu Bleikristallglas enthalten unterschiedlichste Zusammensetzungen wie die nachfolgenden Tabellen zeigen.

Tabelle 1: Typische Gemengesätze für Floatglas und Spiegelglas


Der Quarzsand dient als reiner SiO2-Träger zur Netzwerkbildung. Sein Anteil an Eisenoxid entscheidet über die Eigenfarbe des Glases, die leichte Grünfärbung. Die Korngröße des Sandes sollte möglichst zwischen 0,1 und 0,4 mm liegen. Flussmittel dienen dazu, den sehr hohen Schmelzpunkt des Quarzsandes von ≥1.700 °C zu reduzieren.

Soda oder Natriumkarbonat (Na2CO3) als Mineral Natrit dient als Netzwerkwandler und Natriumoxidträger und es sorgt als Flussmittel auch für einen niedrigeren Schmelzpunkt des SiO2. Dabei wird während des Schmelzvorganges CO2 als Gas frei, das aus der Schmelze entweichen muss, das Natrium geht während des Schmelzvorganges in das Glas ein.

Dolomit ist der Träger von CaO und MgO, dabei wirkt MgO ähnlich wie CaO, das bei mäßiger Zugabe von ca. 10 – 15 % die Härte und chemische Beständigkeit des Glases erhöht. Dolomit wird in Flachglas meist anstelle von Kalk eingesetzt, da in ihm CaCO3 und MgCO3 enthalten sind.

Kalk oder Calciumcarbonat (CaCO3) dient als Netzwerkwandler, in der Schmelze entsteht dadurch bei ca. 1000°C das Gas CO2, das aus der Schmelze entweicht und CaO, das in das Glas eingeht. Kalk kommt in der Natur als Kalkstein, Kalkspat, Kreide oder Marmor vor. Durch die Beimengung von Kalk wird die Härte und chemische Resistenz des Glases erhöht.

Feldspat (NaAlSi3O2) dient als Zuträger von Al2O3 (Tonerde) in das Gemenge, neben SiO2 und NaO2. Dadurch erhöht sich die chemische Beständigkeit gegenüber Wasser, Umwelteinflüssen und Nahrungsmitteln.

Sulfat in Form von Na2SO4 dient in geringen Mengen zur Erzielung verbesserter Schmelzeigenschaften.

Tonerde oder Aluminiumoxid (Al2O3) dient in der Schmelze als Netzwerkbildner und beseitigt Trennstellen im SiO2-Tetraeder. Es wird dem Gemenge meist als alkalihaltiger Feldspat (z. B. NaAlSi3O8) beigemischt. Dadurch erreicht man eine verbesserte chemische Resistenz und eine erhöhte Zähigkeit in tieferen Temperaturbereichen.

Pottasche oder Kaliumcarbonat (K2CO3) dient als Lieferant von Kaliumoxid für die Schmelze als Netzwerkwandler und als Flussmittel. Es wurde früher durch Auslaugen von Holzasche in großen Gefäßen gewonnen, inzwischen wird es industriell aus Kaliumsulfat hergestellt. Auch hierbei wird während des Schmelzvorganges CO2 als Gas frei, das aus der Schmelze entweichen muss.

Neben diesen Hauptbestandteilen des Gemenges werden diesem noch verschiedenste Oxide beigemischt zur Beeinflussung von Beständigkeit, Härte, Schmelztemperatur, Lichtbrechung und Brillanz.

Scherben aus der eigenen Produktion oder aus dem Altglasrecycling werden dem Gemenge ebenfalls beigegeben, Altglas vor allem in der Behälter- und Glaswollindustrie. Sie dienen in gewisser Weise ebenfalls als Flussmittel, um den hohen Schmelzpunkt zu senken.

Die Zusammensetzung des daraus erschmolzenen Glases zeigt die nachfolgende Tabelle.

Tabelle 2: Zusammensetzung von Floatglas

(Kalk-Natronsilicatglas)


Durch die Zugabe von Aluminiumoxid wird die mechanische, thermische und chemische Widerstandsfähigkeit von Glas erhöht.

Borosilicatgläser enthalten einen niedrigeren Anteil an Alkalien (Na2O) und Erdalkalien (CaO, MgO) und dafür ca. 7 bis 15 Gewichts-% Boroxid (B2O3). Dadurch erhalten sie eine geringere thermische Ausdehnung und somit eine höhere Temperaturwechselbeständigkeit gegenüber Kalk-Natronsilicatgläsern.

Tabelle 3: Zusammensetzung verschiedenster Glasarten in

Gewichtsprozent [49]


1) Die Zusammensetzung von Floatglas kann von Hersteller zu Hersteller geringfügig schwanken in Abhängigkeit des verwendeten Sandes, der Scherbenzugabe und sonstiger Gemengeeinstellungen.

1.4 Färben von Glas

Die häufigste Möglichkeit, Glas mit Farbe herzustellen, ist die Einfärbung der Glasschmelze mit verschiedensten organischen Zusätzen. Dazu werden meist Metalloxide verwendet, die schon in der Antike zur Glasfärbung herangezogen wurden. Die natürliche Eigenfarbe von Floatglas ist ein leichter Grünton, der vom Eisenoxidanteil im Quarzsand herrührt. Die in folgender Tabelle aufgeführten Zusätze werden verwendet, um die Farbe des Glases entsprechend zu verändern. Neben der Durchfärbung von Glas gibt es noch die Anlauffärbung, die jedoch bei Flachglas keine Rolle spielt, sondern nur bei Hohlgläsern zum Einsatz kommt.

Tabelle 4: Färbemittel für Glas [14], [49]



1) Uranoxid wird nicht mehr zur Glaseinfärbung verwendet, da radioaktiv strahlend.

1.5 Glas in der Natur

Der Moldavit ist ein in der Natur vorkommendes Glas, somit ein natürliches Glas aus geschmolzenem Quarzsand, dessen grünliche Farbe vom Eisenoxid herrührt. Gläser aus vulkanischem Ursprung sind Bimsstein und Obsidian. Bei Blitzeinschlägen kann aufgrund der hohen Temperatur Fulgurit entstehen, durch Meteoriteneinschläge entstandene natürliche Gläser sind sogenannte Impaktgläser und Tektite. Bei Bergstürzen entstandene Gläser werden Köfelsit genannt. Selbst bei Atombombenexplosionen kann Glas entstehen, der Trinitit, allerdings kann man dabei nicht mehr von natürlichem Glas sprechen. Alle diese „natürlichen“ Gläser entstehen beim Schmelzen von Sand unter den verschiedensten Einflüssen der Natur.

Glasschäden

Подняться наверх