Читать книгу Фабрика планет. Экзопланеты и поиски второй Земли - Элизабет Таскер - Страница 6

Первая часть. Пыль на фабричном полу
Глава 2
Небывалая стройка

Оглавление

В августе 2013 г. в американском городе Уилмингтон в штате Делавэр появилась небывалых размеров башня из пластиковых деталей LEGO – высотой 34,44 м. Возвели это разноцветное строение ученики 32 местных школ. Сначала школьники собрали сегменты будущей башни. Затем команда строителей при помощи крана соединила их в грандиозную постройку, Она была официально внесена в книгу рекордов Гиннесса: на ее строительство ушло около 500 000 деталей LEGO, башня почти на 2 м превысила прежний рекорд.

Этот проект демонстрирует принцип, действующий во Вселенной миллиарды лет: чтобы построить что-нибудь по-настоящему масштабное, следует начинать с малого, постепенно двигаясь в сторону увеличения. Например, формирование планет Солнечной системы происходило путем слияния микроскопических пылинок, окружающих нашу молодую звезду.

Несмотря на уверенность в том, что все именно так и происходило, планетологам пришлось сначала ответить на два непростых вопроса. Во-первых, было далеко не очевидно, почему собственно частицы пыли удерживаются вместе. Кучу камней, из которой состоит астероид Итокава, удерживало вместе его собственное гравитационное поле. Сила гравитационного притяжения зависит от массы объекта. К примеру, если диаметр такого каменистого тела меньше 1 км, его массы недостаточно, чтобы обеспечить силу, необходимую для удержания составляющих его частей. Результат можно сравнить с попыткой слепить что-нибудь из сухого песка на пляже: стоит убрать руки, как сооружение тут же рассыпается.

Во-вторых, оставалось загадкой, как была достигнута такая скорость протекания процесса, которая обеспечила формирование Солнечной системы до момента уничтожения Солнцем протопланетного газового диска. Наблюдения за протопланетными дисками вокруг молодых звезд показали, что на формирование планет отводится не более 10 млн лет. В рамках этого временного промежутка из пылинок размером в одну десятую песчинки должна сформироваться молодая планета с массой, достаточной для удержания газовой атмосферы, несмотря на рассеивание остальной части диска.

Это похоже на эксперимент, в котором вам дают коробку с кубиками и просят построить из них башню, но, когда вы беретесь за работу, оказывается, что кубики абсолютно гладкие, а коробку нужно вернуть сразу после перерыва на обед.


На Земле даже башню, построенную из рекордного количества кубиков, можно легко измерить в метрах. Во Вселенной все иначе: масштабы строительства там куда больше. Чтобы не оперировать числами умопомрачительной длины, давайте сделаем небольшое отступление и подберем более практичные единицы измерения расстояний, подходящие для исследования Солнечной системы.

Разумеется, никто не запрещает использовать при оценке положения планет метры или километры, но у неприлично длинных чисел есть одна особенность: нам трудно понять, что они значат. Например, расстояние от Земли до Солнца составляет 149 600 000 км, а Юпитер находится в 778 340 000 км от нашего светила. Поскольку мы привыкли к дистанциям иного порядка, вроде поездки в супермаркет, эти расстояния воспринимаются как непостижимо большие, и нам трудно с ходу оценить, насколько дальше относительно нас находится Юпитер в Солнечной системе.

Для решения этой проблемы в качестве единицы измерения астрономы используют расстояние от Земли до Солнца. Его назвали астрономической единицей (сокращенно – а.е.). По определению, Земля в среднем находится на расстоянии 1 а.е. от Солнца. Расстояние от Юпитера до Солнца можно записать как 5,2 а.е., а значит, эта планета более чем в 5 раз дальше от Солнца, чем Земля.

Приведенные значения важны, поскольку от расстояния до Солнца зависит тип космической пыли, из которой формируется планета. Нагреваемый молодой звездой протопланетный диск в центре значительно горячее, чем по краям, куда солнечным лучам приходится добираться дольше. Этот градиент температуры определяет, какие элементы могут конденсироваться в твердые тела. Подобно воде, которая превращается в лед при 0 °C, другие молекулы превращаются из газа в твердые частицы пыли при более низких или высоких температурах. Вблизи от Солнца, внутри орбиты Меркурия, температура превышает 2000 °C. Под ее воздействием все твердые тела испаряются, в результате чего образуется пространство без пыли. По мере удаления от звезды температура падает до 1500 °C, что создает условия для формирования первых частичек пыли из металлов, включая железо, никель и алюминий. На орбите Земли, то есть на расстоянии 1 а.е., к ним присоединяются силикаты, а когда температура опускается ниже точки замерзания, появляются льды. Первый лед, который образуется в процессе затвердевания, – лед из чистой воды, состоящей из водорода и кислорода. Дальнейшее понижение температуры приводит к образованию других льдов на основе водорода, включая твердый метан и аммиак. В состав этих льдов входят элементы, которые встречаются намного чаще, чем металлы внутреннего диска, что приводит к лавинообразному формированию нового материала там, где они затвердевают. Границу, после которой появляются льды, часто называют линией льдов, линией замерзания или снеговой линией. Она отделяет планеты земной группы, такие как Земля и Марс, от газовых гигантов вроде Юпитера. Более того, она помогает объяснить основные различия между ними.

Образуясь из частиц пыли в протопланетном диске, каждая планета состоит из твердых тел, которые окружали ее в процессе формирования. Например, в случае с Меркурием это привело к образованию объекта, который состоит преимущественно из железа[5]. С учетом небольшого размера Меркурия, из-за которого гравитационные силы сжимают его не так сильно, как Землю, наличие большого количества тяжелого вещества в составе этой планеты обеспечивает ей самую высокую плотность в Солнечной системе. Плотность планет, которые находятся на большем удалении от Солнца, оказывается несколько ниже, поскольку в состав доступных частиц пыли входит больше различных молекул, но при этом эти планеты остаются каменистыми. А как только мы пересекаем снеговую линию, диск заполняют льды с низкой плотностью. Благодаря резкому увеличению количества вещества из него могут формироваться более крупные объекты, которые однажды могут стать ядрами планет-гигантов.

Впрочем, даже если приведенное описание не противоречит идее о том, что планета образуется из находящихся поблизости частиц пыли, оно не объясняет, как они соединяются вместе.

Клей-карандаш

Взвешенные в газе частицы пыли сбить с пути истинного легче, чем ребенка в кондитерском отделе. Это как раз то что нужно для формирования планеты, ведь если бы пыль оставалась на строго круговых орбитах, столкновения происходили бы редко, а до образования крупных объектов дело никогда бы не доходило. Нам повезло, что у пыли есть авантюрные наклонности, которые заставляют частицы отклоняться от круговых орбит, переходя дорогу другим частицам.

Впервые этот тип аномального движения наблюдал в 1827 г. ботаник по имени Роберт Броун, изучавший поведение частиц пыльцы при нахождении во взвешенном состоянии в воде. Броун заметил, что частицы движутся беспорядочно, но ответить на вопрос о причине этого движения так и не смог. И только в начале следующего столетия проблему распутал Альберт Эйнштейн, который понял, что о пыльцу ударялись молекулы воды. Эйнштейн бы мог получить Нобелевскую премию за это открытие, поскольку оно подтверждало существование атомов и молекул, но он уже получил ее пятью годами ранее за совершенно другое исследование. Вместо него в 1926 г. награду получил французский физик Жан Батист Перрен, который экспериментально подтвердил предложенное Эйнштейном объяснение. Наблюдений Роберта Броуна оказалось недостаточно для какой-нибудь награды, но само явление было названо в честь него броуновским движением.

В протопланетном диске роль молекул воды, которые хаотично движутся вокруг маленьких частиц пыли, выполняет газ. Помимо броуновского движения на частицы пыли также воздействует собственное некруговое движение газа, вызываемое пронизывающим диск магнитным полем. Наконец, небольшие карманы газа чуть большей плотности тоже могут становиться источниками слабого гравитационного притяжения для легко поддающихся его воздействию крошечных частичек.

О силе, заставляющей притягиваться две сталкивающиеся частицы в самом начале процесса образования планеты, мы знаем несколько больше. Размер частиц пыли, сконденсировавшихся в протопланетном диске, равен одной десятой размера песчинки, то есть он измеряется в микрометрах (тысячных долях миллиметра). При движении на скоростях ниже 1 м/с эти частицы могут удерживаться вместе электрическим зарядом их атомов, образуя неплотную массу.

Песчинка пыли состоит из молекул, например льда или силиката, которые нейтральны и не имеют ни общего положительного, ни общего отрицательного электрического заряда. Каждая из этих молекул состоит из двух или более атомов, в центре которых находится положительно заряженное ядро, окруженное отрицательно заряженными электронами. Однако электроны не статичны. Напротив, они перемещаются по молекуле, в результате чего там, где они собираются на короткое время, появляется небольшой отрицательный заряд, тогда как противоположная сторона молекулы становится положительно заряженной. Отрицательно заряженный конец молекулы может притягивать положительно заряженный конец соседней молекулы, удерживая их вместе. Эту силу, обусловленную небольшой асимметрией электрических зарядов, называют вандерваальсовой силой в честь голландского ученого Йоханнеса Дидерика Ван-дер-Ваальса. Сама по себе эта сила достаточно слаба и потому эффективна только при очень легких столкновения частиц пыли. В остальных случаях мы сталкиваемся (метафорически и буквально) с проблемами.

В масштабах микрометров первоначальное беспорядочное движение частиц пыли происходит настолько медленно, что вандерваальсовых сил оказывается достаточно для того, чтобы удерживать сталкивающиеся частицы вместе. Проблема в том, что частицы пыли увеличиваются в размерах, а значит, увеличивается и скорость столкновения. Как только микрометровые частички становятся миллиметровыми гигантами, вандерваальсовы силы уже не могут их удерживать. В результате при столкновении частицы отскакивают.


Когда две частицы пыли отскакивают друг от друга, они не увеличиваются. Поэтому при переходе от микрометрового масштаба к миллиметровому рост частиц прекращается. В итоге образуется множество миллиметровых частиц.

То есть, как это ни печально, процесс формирования планеты заходит в тупик, выйти из которого можно только в том случае, если по какой-то случайности нескольким частицам пыли удастся перейти в сантиметровую лигу. В ходе лабораторных экспериментов было показано, что при столкновении двух частиц с достаточной большой разницей в размерах меньшая частица отскакивает, но при этом теряет половину своей массы. Представьте, что вы бросаете в своего брата комок желе. Разумеется, значительная его часть окажется на полу. Но и на лице брата останется немало. Поэтому, когда сантиметровые частицы оказываются в облаке миллиметровой пыли, они начинают набирать массу за счет столкновений с частицами пыли.

Несмотря на очевидный потенциал, предложенное объяснение не дает ответа на вопрос о том, как появляются сантиметровые частицы пыли. Фактически существует два пути преодоления проблемы отскакивания. Первый – слепая удача. Да, средняя скорость столкновений между частицами пыли возрастает с увеличением их размера, но при этом все равно остается определенный диапазон значений, в рамках которого некоторые столкновения могут проходить на достаточно низких скоростях, обеспечивающих формирование сантиметровых частиц пыли за счет действия вандерваальсовых сил. Согласно второму подходу, отскакивание перестает быть проблемой, когда мы имеем дело с чем-то, имеющим рыхлую структуру.

Представьте, что вы бросаете в стену резиновый мяч. Если вы хорошо прицелитесь, мяч отскочит от стены прямо вам в нос. Теперь представьте, что вместо стены – гигантский комок пыли и пуха, который обычно незаметно скапливается под диваном. Брошенный вами мяч скорее пролетит через такой комок пыли, чем отскочит от него. Если ком достаточно большой, мяч просто-напросто застрянет в его пушистых недрах и станет частью его структуры.

Частицы протопланетной пыли, конечно, вряд ли состоят из смеси пыли, кошачьей шерсти и пуха, но в условиях низкой гравитации в космосе они могут иметь рыхлую структуру. В частности, это относится к частицам, состоящим из более легких элементов, таких как лед. Столкновения между такими рыхлыми частицами трудно воспроизвести в лабораторных условиях, поскольку они будут сжиматься под действием силы гравитации Земли. Чтобы преодолеть данное ограничение, можно попробовать воспроизвести столкновение в виртуальной среде с помощью компьютерных симуляций. Результаты такого моделирования реальности показывают, что на скоростях свыше 60 км/с микрометровые частицы льда, вместо того чтобы отскакивать, прилипают друг к другу. Если бы частицы сохраняли рыхлую структуру, но при этом состояли из силикатов (что более вероятно для той части Солнечной системы, где формировалась Земля), то они бы удерживались вместе на скоростях до 6 км/с.

Похоже, мы нашли ключ ко всем загадкам процесса формирования планет. Движущиеся с низкой скоростью микрометровые частицы пыли удерживаются вместе вандерваальсовыми силами электрической природы, образуя миллиметровые частицы. Те из них, что имеют наиболее рыхлую структуру, соединяются друг с другом, образуя сантиметровые частицы, после чего и рыхлые, и твердые частицы набирают массу при столкновениях с частицами меньшего размера. Если это продолжается пару миллионов лет, могут сформироваться объекты размером с астероид Итокава, целостность которых обеспечивается гравитацией.

Это решение было бы идеальным, если бы не газовый диск.


При движении по орбите вокруг молодого Солнца на газ и твердые частицы действуют разные силы. Для мельчайших частиц пыли меньше сантиметра размером эта разница не имеет значения. Крошечные частицы находятся во взвешенном состоянии в газе, который несет их с собой как ребенка в слинге, заставляя двигаться с одинаковой скоростью. По мере того как частицы пыли увеличиваются, превращаясь в более крупные твердые тела, они становятся все больше похожи на начинающих ходить детей, которых пока еще нужно держать за руку. Они по-прежнему движутся по орбите вокруг звезды, но их движение уже не так тесно связано с окружающим газом. И тогда возникает проблема, поскольку частицы – твердые, а газ – текучий, а текучая субстанция подвержена давлению.

В отсутствие газового диска на твердые тела действуют сила притяжения Солнца и обратная поддерживающая сила, обусловленная их собственным вращением. Возникающее в результате этого взаимодействия движение называют кеплеровским в честь Иоганна Кеплера, который описал соответствующую орбиту в своих законах движения планет. При этом на газ оказывают воздействие не только эти две силы, но еще и сила давления. Она возникает в связи с тем, что в результате аккреции протопланетного материала на Солнце плотность диска увеличивается к центру. На твердых телах это никак не сказывается. Но этот градиент создает дополнительную центробежную силу, под действием которой газ замедляется на 0,5 % относительно скорости кеплеровского движения. В результате твердые тела, подобно велосипедисту, испытывают сопротивление встречного ветра, создаваемого более медленным газом, который толкает их в обратном направлении. И точно так же, как велосипедист, который борется с сильным встречным ветром, твердые тела начинают терять скорость.

5

Железа на Меркурии даже больше, чем можно было бы предположить исходя из его близости к Солнцу. Возможно, в истории этой планеты имело место столкновение, из-за которого она лишилась части своей нежелезной твердой оболочки, и доля железа в ее составе выросла. Впрочем, даже это полностью не объясняет ее состав, который остается под вопросом.

Фабрика планет. Экзопланеты и поиски второй Земли

Подняться наверх