Читать книгу Просчитать будущее. Кто кликнет, купит, соврёт или умрёт - Эрик Сигель - Страница 9

Введение
Эффект прогнозирования
«Накормите меня!» – пища для размышлений для компьютеров

Оглавление

Данные – это новая нефть.

Меглена Кунева, еврокомиссар по защите прав потребителей

Единственным источником знаний является опыт.

Альберт Эйнштейн

Богу мы верим, все остальные должны предоставлять данные.

Уильям Эдвардс Деминг (американский ученый, известный своей теорией управления качеством)

Большинство людей не испытывают никакого интереса к данным. Что может быть скучнее, чем эти бесконечные массивы сухих цифр и фактов, порой столь банальных, как пост в Twitter типа «Я купил себе новые кроссовки!». Это бесполезный побочный продукт, который в огромных количествах образуется в процессе ведения любого бизнеса.

Вы ошибаетесь! Правда в том, что данные представляют собой бесценное собрание опыта, на котором можно учиться. Каждая медицинская процедура, кредитная заявка, публикация на Facebook, рекомендация фильма, акт мошенничества, спам-сообщение или покупка – каждый положительный или отрицательный результат, каждая успешная или неудачная попытка продажи, каждый инцидент, событие и транзакция – кодируются как данные и сохраняется в базе данных. По оценкам, объемы данных увеличиваются на 2,5 квинтиллиона байтов в день (это единица с 18 нулями). Вот где произошел настоящий Большой взрыв, породив безграничные потоки сырых, необработанных данных, с которыми могут справиться только компьютеры. При правильном использовании компьютеры жадно поглощают этот океан данных – и учатся на них.

Иногда погоня за данными превращается в настоящую золотую лихорадку. Но данные – это не золото. Повторяю, необработанные данные – это сырье. Золото – то, что можно из них добыть.

Процесс машинного обучения на основе данных раскрывает всю мощь этого все возрастающего ресурса. Он позволяет выявить, что движет людьми и их поступками, что цепляет нас за душу и как устроен мир. Получение таких знаний и делает прогнозирование возможным.


Например, благодаря машинному обучению мы получили такие ценные сведения, как[1]:

• ранний выход на пенсию уменьшает ожидаемую продолжительность жизни;

• люди, которых на сайтах знакомств чаще отмечают как привлекательных, вызывают меньше интереса;

• большинство фанатов Рианны по своим политическим убеждениям – демократы;

• вегетарианцы реже пропускают авиарейсы;

• количество преступлений на местном уровне увеличивается после публичных спортивных мероприятий.


Машинное обучение опирается на подобные знания, чтобы совершенствовать прогнозные возможности систем через процесс обработки больших объемов данных по методу проб и ошибок, уходящий корнями в статистику и компьютерную науку.

1

Более подробно об этих примерах читайте в главе 3.

Просчитать будущее. Кто кликнет, купит, соврёт или умрёт

Подняться наверх