Читать книгу История ракетно-ядерной гонки США и СССР - Евгений Буянов - Страница 8
Конструкции первых американских атомных бомб
ОглавлениеПервые американские бомбы были сделаны по двум разным технологиям, которые американцы развивали параллельно и «конкурентно», – два направления привели к неравнозначным успехам, а остальные направления «провалились» из-за слишком высоких затрат или нерешённых технических проблем. Одно направление – это обогащение урана до оружейного уровня не менее 90 %. Второе – это получение изотопа плутония-239 в ядерных реакторах.
В самом первом бомбе-устройстве «Штучка», взорванном на испытании «Тринити» – «Троица» в Аламогордо 16 июля, и в такой же бомбе, но с оболочкой и собственной автономной электросистемой «Толстяк» (взорванной над Нагасаки) применяли заряд из плутония-239. Заряд шаровой формы имел массу 6,4 кг. Этот плутоний получали в ядерных ректорах вначале с природным, а затем с низко-обогащённым ураном и с замедлителями нейтронов на графите (а после и на тяжёлой воде D2О). При поглощении нейтрона ядро изотопа природного урана-239 становилось ядром плутония-239, который и выделяли из продуктов деления реактора. Циклы превращений урана-238 в плутоний-239 и цикл превращения тория-232 в ядерное горючее Уран-233 включают захват ядром атома нейтрона (n,σ) с последующим бета-распадом β, – циклы следующие (n – нейтрон, σ – поглощение, β – распад с излучением электрона):
92U238(n,σ)→ 92U239 →β93Np239→β94Pu239 – цикл Плутония-239
90Th232(n,σ)→ 90Th233→β91Pa233→β92U233 – цикл Урана-233
В США плутоний-239 производился в Хэнфорде, штат Вашингтон и Саванне, штат Джорджия.
Оружейный уран в США производили на заводе К-25 с дополнительным обогащением на каллютроне Лоуренса, пока завод К-25 не достиг выхода изотопа с требуемой концентрацией.
Мы видим, – в качестве «ядерного горючего» для реакторов и зарядов для атомных бомб необходимо получить определённые изотопы урана и плутония. Однако при определённых условиях оказалось возможным получить цепную реакцию и в природном уране, если удавалось замедлить нейтроны, увеличить их захват атомами урана-235 и произвести в реакторах плутоний для бомб.
Принципиальное доказательство возможности создания атомной бомбы было не только теоретически, но и практически получено после осуществления цепной ядерной реакции (ЦЯР) в ядерном реакторе. В США первую цепную ядерную реакцию в реакторе американские физики во главе с Энрико Ферми получили 2 декабря 1942 г. в Чикаго (установка располагалась на территории студенческого стадиона). Коллектив И. В. Курчатова добился в СССР того же результата 25 декабря 1946 года. Вы видите, – между ЦЯР и первыми испытаниями бомб 16 июля 1945 и 29 августа 1949 и у США и у СССР прошло 2 года и 7 месяцев в обоих случаях плюс 17 дней у США и плюс 27 дней у СССР. Это реальный объективный срок развития данной научной разработки, который тогда заметно уменьшить было нельзя по объективным причинам. Причём обе эти разработки велись фактически в условиях и по логике «аврала» военного времени, – с полной отдачей сил и не жалея средств.
Урановая бомба «Малыш» – «пушечная» конструктивная схема (см. [5], c. 49)
Бомбы имели разную конструкцию. В «Малыше» сжатие заряда ядерной взрывчатки из урана-235 достигалось «пушечной» схемой, – выстрелом части заряда из пушки во вторую часть, являвшуюся мишенью, которая была заключена в толстую наружную оболочку – тампер из карбида бора (отражатель нейтронов и удерживающую заряд в начальное мгновение взрыва). В «Толстяке» заряд сжимался более сильно в результате направленного взрыва внешней взрывчатки, – заряд «имплозивного» типа из «линз» взрывчатки. Без сильного сжатия заряда простым соединением частей заряда в «критическую массу» ядерного горючего взрыв не мог получиться мощным ввиду быстрого распыления ядерного заряда в начальный момент взрыва. И даже при достигнутых американцами сжатиях заряда, он делился только частично, и КПД первых ядерных бомб был на уровне КПД «паровоза» или «автомобиля – порядка 1 % в «Малыше» и до 15 % в «Толстяке», а в более совершенных конструкциях бомб его удалось повысить. Примерно таким же невысоким был и КПД первых крупных баллистических ракет!
На рисунке бомбы «Малыш» красные части заряда – это «мишень» и «снаряд» внутреннего ствола гладкоствольной пушки с длиной ствола 1,8 м, калибром 164 мм. Заряд кордитного пороха 3.5 кг разгонял подвижную часть ядерного заряда в 38,5 кг в виде трубы из колец оружейного урана-235 до скорости 300 м/с. Неподвижная часть заряда в виде мишени-цилиндра из колец с меньшим диаметром, входившими во внутреннюю часть подвижного заряда, имела 25,6 кг урана-235. Общая масса заряда 64,1 кг превышала критическую. Вокруг неподвижной части располагался отражатель нейтронов и «держатель заряда» (тампер – замедлитель) с зазором 59 мм. Инициатор нейтронов выполнили из Бериллия и Полония-210. Полураспад Полония-210 всего 138 суток, поэтому при длительном хранении атомных бомб его надо или заменять, или хранить отдельно и вставлять только перед использованием бомбы. Это – «быстропортящийся» и весьма дорогой элемент, который нуждался в периодическом обновлении. Позже для источников нейтронов бомб стали применять другие вещества, например, на основе дейтеридов и третидов урана (см.[40], с. 180).
При быстром соединении частей заряда происходило его уплотнение и происходил взрыв. При этом распадалось около 0,7 кг урана – около 1 %. Остальная часть распылялась без распада. Дефект массы при взрыве составлял 600 мГ – энергетически от 13 до 18 кТ ТЭ. Масса бомбы 4400 кг, длина 3 м, диаметр 71 см. Взрыв произведён на высоте 576 м над землёй. Потери в Хиросиме (начальные и окончательные): 90–166 тыс. человек.
Примечание. В известном фильме «Девять дней одного года» отец спрашивает Гусева: «Ты «бомбу» делал?» И тот отвечает: «Делал, Батя. А если бы не делал, – так не было бы у нас этого разговора. И половины человечества в придачу…». А в другом фрагменте Гусев сообщает жене, что у него уже был случай, когда он «схватил» изрядную долю радиации. Когда делал эксперимент по определению критической массы «жидкого урана». А почему «жидкого»? Да потому, что в условиях сильного сжатия и высоких температур при инициализации ядерного взрыва металл заряда не может быть в твёрдом состоянии – он жидкий… Конечно, эта фраза – из художественного кинофильма, но в ней есть объективный физический смысл. Таких фраз в фильме немало. Это очень глубокий фильм, – смысл некоторых фраз из него дошёл до нас спустя много лет после первого просмотра ещё в детстве. В частности, слова Гусева дают ответ на вопрос, зачем нужны были огромные затраты на создание ЯО, и за что советские учёные-физики отдавали своё здоровье и свои жизни.
Для «Толстяка» пушечная схема оказалась непригодной. Наличие в плутонии значительных долей изотопа-240 делало процесс активации взрыва по «пушечной схеме» очень нестабильным. Плутоний-240 испускал много нейтронов, которые вызывали преждевременную реакцию заряда с его распылением до достижения необходимой критической массы и, как следствие, – неэффективный взрыв заряда с малой мощностью – «хлопо́к»). «Пушечная схема» оказалась для плутониевой бомбы неприемлемой, поскольку требовала примерно в 100 раз большей скорости соединения зарядов в критическую массу для достижения требуемых параметров инициации заряда. Очистить же плутоний-239 от изотопа-240 было заметно сложнее, чем уран-235 от урана-238 из-за малой разницы в весе атомов этой пары изотопов (240–239=1, а 238–235=3).
Для инициирования плутониевого заряда и перевода его в критическое состояние требовалось сжать его со всех сторон с очень большой силой, с давлением в тысячи атмосфер, причём с очень большой – космической скоростью. Это можно выполнить только с помощью мощного взрывчатого вещества со скоростью горения 7–8 км в с. Привлечённая к этой работе группа Сета Неддельмейера из артиллерийско-технического отдела Пентагона столкнулась с большими трудностями: следовало создать сферическую волну взрыва, направленную не только наружу, но и внутрь для сжатия заряда. Путь для решения проблемы предложил Джеймс Так – английский физик из Манчестера, изучавший кумулятивные эффекты и прибывший в США вместе с другими британскими учёными. В мае 1944 года своё мнение, подкреплённое расчётами, высказал и ведущий британский специалист по гидродинамике Джеффри Тейлор. На основе заключений этих специалистов физики Лос-Аламоса пришли к выводу, что единственно правильным решением будет создание системы «взрывных линз», создающих сферическую волну, направленную внутрь. Оппенгеймер создал два отдела для решения проблемы: отдел «G» («gadget» – устройство), продолжавший разработку бомбы «Толстяк» и отдел «Х» (Explosives – сжатие).