Читать книгу Основы организации мышления, или Сколько будет 2+2 - Евгений Елизаров - Страница 9

Глава 1. Основания качественного анализа, или Два чего и два чего?
§ 7. «Двуногость» и «плосконогтие», или Пределы количественного анализа

Оглавление

Наконец, самое интересное, что всплывает в ходе поиска оснований сложения разнородных начал.

Как правило, все, что протекает в неограненном строгими формами потоке предвычислений, иными словами, в ходе предварительной обработки каких-то интуитивных общих представлений о мире, обнаруживается нами лишь там, где уровень сложности скрытых от обыденного сознания процессов переходит некий критический рубеж. Но, как уже говорилось, далеко не всегда мы оказываемся на должной духовной высоте и осознаем эту сложность как интеллектуальную задачу, которая требует своего разрешения. Гораздо чаще все списывается на глупость поставленного вопроса, а то и вообще на глупость того, кто его задает.

Мы вправе говорить о возрастающей практической значимости задачи сложения, казалось бы, несопоставимых величин, и чем дальше диверсифицируется совокупная деятельность человека, тем настоятельней становится потребность развития и совершенствования интеллектуальных навыков ее решения. А это значит, что единым действием сложения могут быть объединены даже самые неожиданные вещи. Одно уравнение:

«веревкообразность» + «столбоподобие» + «змеевидность» = слон.

уже было рассмотрено и успешно решено нами. Попробуем решить другие:

«одушевленность» + «двуногость» + «плосконогтие» – «перья» =?

«капитанские погоны» + «спящие фазаны» – «мировой порядок» =?

Какой-то опыт уже подсказывает нам, что за предельной идиотичностью могут скрываться очень важные вещи, однако даже самая пылкая фантазия не в состоянии вообразить, что и здесь может таиться что-то осмысленное. И тем не менее смысл (и очень глубокий) есть. Скажем больше: слишком многое в европейской культуре зиждется именно на правильности или неправильности решения этих уравнений, чтобы ими можно было пренебречь. Слишком многое и в нашем анализе зависит именно от того, каким будет ответ.

Впрочем, продлим интригу. Отметим только, что решение подобных уравнений столь же значимо и для нашей цивилизации и для организации мышления отдельно взятого индивида, сколь умение складывать парно– и непарнокопытных и фортепианные концерты с египетскими пирамидами. Вполне справедливо предположить, что количественному сравнению могут и должны подлежать не только те вещи, качественные отличия между которыми сравнительно невелики, но и те, между которыми пролегает целая пропасть.

Стоит задуматься о том, что такие парадоксальные вопросы имеют полное право не только на существование, но и на получение четкого и однозначно интерпретируемого ответа. Стоит уже хотя бы для того, чтобы обнаружить (а нам еще предстоит убедиться в этом), что все те количественные шкалы, которыми пользуются в повседневном обиходе, решительно неприменимы там, где качественные отличия между подлежащими сопоставлению вещами, явлениями, процессами оказываются слишком большими.

О чем говорит отсутствие шкал, необходимых для измерения последних? О том, что количественные операции вообще не могут выполняться там, где качественные отличия переходят какой-то критический рубеж?

Здесь есть некая тонкость, которая требует своего осознания. Или мы соглашаемся с тем, что операции количественного сопоставления могут совершаться над любыми вещами вообще, или признаем, что они правомерны только для сравнительно небольшой части общего круга объектов, процессов, явлений, которые в своей сумме и составляют всю окружающую нас действительность. Последнее обстоятельство означает, что сфера количественного анализа должна быть ограничена, что за пределами этого круга не вправе применяться решительно никакие количественные определения. Словом, математика не вправе претендовать на всеобщность, действительный круг «подведомственного» ей сравнительно узок. Другими словами, объект-носитель тех или иных качеств, например, флейта, способная издавать приятные звуки, токарный станок, способный резать металл, это одно, а присущие им свойства – совершенно другое. Мы вправе суммировать первую со вторым, например, по «штукам» или какому-нибудь другому основанию, скажем, по массе. В последнем случае допустимо утверждать, что масса станка значительно превосходит массу музыкального инструмента. Но любая попытка определить, насколько точно (в долях одной «штуки» или в граммах) отличается музыкальная гармония от металлообработки, заранее обречена на провал.

Однако жизнь показывает, что область применимости математики постоянно и неуклонно расширяется, а значит, до пределов количественного анализа еще очень далеко. Вспомним. Вплоть до начала XVII века математика – это преимущественно наука о числах, скалярных величинах и сравнительно простых геометрических фигурах; она оперирует лишь постоянными величинами. К этому периоду относится возникновение арифметики, геометрии, позднее – алгебры и тригонометрии и некоторых частных приемов математического анализа. Областью их применения являются счет, торговля, землемерные работы, астрономия, отчасти архитектура. В Новое время потребности естествознания и техники (развитие мореплавания, астрономии, баллистики, гидравлики и т. д.) порождают идеи движения и изменения. Эти идеи реализуются прежде всего в форме переменных величин и функциональной зависимости между ними. Появляется аналитическая геометрия, дифференциальное и интегральное исчисление. В XVIII веке возникают и развиваются теория дифференциальных уравнений, дифференциальная геометрия и т. д. В XIX–XX веках математика поднимается на новые ступени абстракции. Обычные величины и числа оказываются лишь частными случаями объектов, изучаемых в современной алгебре; геометрия переходит к исследованию неевклидовых пространств. Развиваются новые дисциплины: теория функций комплексного переменного, теория групп, проективная геометрия, неевклидова геометрия, теория множеств, математическая логика, функциональный анализ и другие. Практическое освоение результатов теоретического исследования требует получения ответа на поставленную задачу в числовой форме. В связи с этим в XIX–XX веках численные методы вырастают в самостоятельную ветвь – вычислительную математику. Стремление упростить и ускорить решение ряда трудоемких вычислительных задач приводит к созданию вычислительных машин. Потребности развития самой математики, «математизация» различных областей науки, проникновение математических методов во многие сферы практической деятельности, быстрый прогресс вычислительной техники влекут за собой появление целого ряда новых дисциплин, как, например, теория игр, теория информации, теория графов, дискретная математика, теория оптимального управления.[42]

Думается, можно быть вполне уверенным в том, что и в будущем экспансия количественных методов анализа продолжится, и вполне разумно сделать уже знакомое нам индуктивное умозаключение о том, что, наверное, не существует вообще никаких пределов для количественного исследования. Но если эта индукция верна, то абсолютно правомерно ставить вопрос о количественном соотношении между собой любых начал, любых объектов, процессов, явлений. Словом, об измерении, сравнении всего того, о чем вообще только можно помыслить. Таким образом, в логическом пределе оказывается допустимым сложение друг с другом самых «экзотических» вещей, утверждать, что своя количественная шкала должна найтись для любого класса явлений. А значит, то, что сегодня мы можем выполнить эту операцию далеко не со всеми из них, говорит лишь о том, что совокупность общих представлений о мире, которые лежат в основании любого счета, далеко не завершена.

Впрочем, мы уже смогли понять, что способность решать анализируемые здесь уравнения требуется не только для тех, кто мечтает о точных науках. Поэтому утешать себя тем, что неспособность к логике и математике еще ничего не значит, что кроме точных наук, есть и такие, как филология (что может быть легче, читай себе беллетристику…), не стоит. Между тем, один из приведенных выше примеров относится именно к филологии, ибо решение уравнения о мировом порядке и капитанских погонах составляет центральный вопрос одного из самых великих романов во всей истории европейской культуры. Кстати, мы встретились именно с ней и в случае с Юдифью и с героями бабелевской «Конармии». Словом, навыки точной мысли требуются повсюду, а значит, их отсутствие так или иначе проявит себя…

Но здесь мы сталкиваемся и с другой, не менее важной для выбора жизненного пути проблемой. Суть ее заключается в следующем. Мечта любого начинающего исследователя состоит в том, чтобы совершить великое научное открытие. Но поначалу едва ли не самой трудной научной проблемой для него оказывается обнаружить хотя бы какую-нибудь проблему, найти то, что еще в принципе не решено наукой. На первых порах кажется, что ею давно уже выявлено все, что только можно, и новое знание реально получить лишь там, где начинается проникновение за какой-нибудь «…надцатый» знак после запятой достоверно установленного результата. Естествоиспытателю, только привыкающему к общению с развитым инструментарием научного исследования, кажется, что современные средства познания уже сегодня позволяют докапываться до самых интимных секретов природы. Дальнейшее же углубление всех наших знаний прямо зависит только от повышения мощности этих средств. Но вот что-то уже начинает подсказывать нам, что в действительности залог достоверности любого теоретического знания кроется не только в строгих правилах и не только в разрешающей способности наших инструментов, но и в не имеющей вообще никаких контуров системе наиболее общих представлений о мире, не исключая философских и тех, которые рождаются при обращении к библейским откровениям и чтении ключевых для истории культуры романов.

Больше того: не столько в инструментарии науки, сколько в этих, не дающих покоя поколениям и поколениям интеллигентов, абстракциях. Между тем общие представления об окружающей действительности – это уже совсем не конкретная научная дисциплина. Упорядоченный их свод в конечном счете образует собой состав философии, здесь именно ее царство. Подлинным залогом истины на поверку оказывается не что иное, как абстрактное философское построение. Прежде всего абстрактное философское построение, и только потом – то остальное, что так поражает входящего в науку исследователя. (Вот только необходимо понять, что философия не сводится к сухим трактатам и учебникам, она растворена во всей совокупности артефактов гуманитарной культуры. Как, впрочем, и в математике, и в физике, и в биологии…)

Таким образом, вовсе не то, что мы привыкли относить к конкретному точному знанию, но нечто совершенно противоположное, неуловимое армирует каркас и нашей культуры и нашей цивилизации. Но одновременно мы замечаем и то, что система общих представлений далеко не полна. Неумение сложить офицерские погоны с мировым порядком и спящими фазанами, результаты футбольных матчей с технологией гальванических покрытий, преобразования Лоренца-Фицжеральда с трансцендентальным единством апперцепции, показывает, что сегодняшняя гордость нашей цивилизации, наши знания, – в действительности весьма обрывочны и фрагментарны. На самом деле окружающий мир – это все еще огромная terra incognita (неизведанная земля), на которой удалось проторить лишь отдельные тропинки. Поэтому неспособность разглядеть фундаментальную научную проблему свидетельствует не столько о достижении пределов развития теоретических представлений, сколько о банальной зашоренности сознания.

А значит, то, что еще не покрывается имеющимися в нашем распоряжении общими абстрактными понятиями, которые были бы в состоянии соединить кажущиеся несоединимыми вещи, может таить в себе самые удивительные научные открытия. Но все эти открытия так никогда и не будут сделаны, если исследовательская мысль станет чуждаться внимательного анализа таких на первый взгляд очевидных и непритязательных истин, как «дваплюсдваравночетыре». Или шарахаться от «дилетантских» попыток сопоставить несопоставимое, сложить «двуногость» (за минусом перьев) с «плосконогтием».

Так что, затруднение со счетом, как кажется, и в самом деле свидетельствует лишь о существовании больших пробелов, «белых пятен» в наших знаниях. Вдумаемся в суть того, что именно утверждает гипотетический запрет на измерение явлений, между которыми существуют слишком большие качественные отличия. Ведь он заставляет нас размышлять над количественным измерением качественной пропасти, которая пролегает здесь. В самом деле, если нельзя сопоставлять друг с другом слишком разнородные вещи, то нужен строгий критерий того, где уровень отличий еще не превышает «норму», и следовательно, уместны все количественные методы, а где начинается методологический «беспредел». Однако ясно, что этот критерий может быть выведен только из скрупулезного анализа степени отличий, которые существуют между вещами и их свойствами. А значит, речь все-таки идет о количественном сравнении совершенно несопоставимых начал. Другими словами, запрет содержит в самом себе глубокое логическое противоречие, ибо вытекающий отсюда вывод категорически опровергает исходную посылку. А такое противоречие не может быть отнесено к разряду тех, которыми оперирует диалектика; подобные ему обязаны изгоняться и из нее.

Здесь правильней было бы выдвинуть другую гипотезу, которая бы утверждала возможность одновременного существования множества количественных шкал для измерения разных групп явлений. В самом деле, существуют же системы шкал, которые позволяют сравнить между собой температуры таких образований, как звезда и живое тело, сопоставить друг с другом размеры атома и галактик, сравнить длительность геологических периодов и времени протекания внутриядерных процессов… Заметим, что глубина отличий между всеми объектами, подвергающимися измерению каждой из этих шкал совершенно сопоставима с той дистанцией, которая отделяет и спящих фазанов от офицерских погон, и результаты футбольных матчей с гальваникой, и релятивистские эффекты теории относительности с трансцендентальным единством апперцепции. Так, может быть, все дело в том, что для сложения несопоставимых начал мы просто не располагаем подходящим инструментарием, подходящим «количеством»? Ведь было же время, когда нам были недоступны и температурные, и временные, и пространственные измерения. Так почему бы не допустить аналогии и здесь?

Совершенно очевидно, что шкала, призванная измерять температуру, глубоко отлична от шкалы, назначение которой состоит в сравнении временных интервалов, шкала, измеряющая массы объектов, абсолютно неприменима для определения кислотности химических соединений. И так далее. Все это наводит на мысль о том, что единого универсального «количества» вообще не существует, что все количественные характеристики любого класса явлений каким-то таинственным – но вместе с тем неразрывным – образом связаны с их качественными особенностями. Выражаясь лапидарным афористическим языком древней Лаконики (а вернее сказать, философским жаргоном), «количество» всегда производно от «качества», и каждому «качеству» соответствует свое и только свое «количество». Словом, строгая индивидуальность качественных характеристик разнородных вещей всегда сопровождается абсолютной исключительностью того «количества», которое им соответствует.

Но повторим то, о чем уже говорилось здесь: любые две разнородные вещи могут быть приведены к какому-то одному основанию сравнения, к одному «качеству». Обратное эквивалентно существованию последней границы мира, ибо его пределы очерчиваются не только пространством и временем, но и качественными характеристиками. И если существуют границы его свойств, то все недоступное сложению может лежать только за ними, то есть принадлежать какому-то другому миру. В пределах же нашего обязана существовать определенная иерархия и «количеств» и «качеств». А значит, и на вершине всего существующего здесь, в «нашем» мире, должны быть какие-то универсалии, которым обязаны подчиняться все отдельные средства измерения.

В самом деле, если мы соглашаемся, что все окружающее – это предмет поступательного развития, предмет непрерывного восхождения от чего-то изначально простого и неразвитого к сложно организованным формам бытия, тогда иерархия качеств получает простое и естественное объяснение. Мы обнаружим, что каждая более высокая ступень образующейся здесь конструкции, генетически связана со всеми низлежащими уровнями. Взаимоотношения между ними принимают строгую упорядоченную форму. Отсюда и все количественные шкалы, способные измерять те или иные «качества», в свою очередь, выстраиваются в некое подобие пирамиды, иерархизируются по мере восхождения от единичных объектов к их видам, родам, классам и так далее. Поэтому более «общие количества» оказываются пригодными только для измерения каких-то умозрительных обобщенных качественных характеристик, но неприменимыми для сопоставления того, что можно увидеть или пощупать. Самым же фундаментальным «количествам», таким, как, например, пространство и время, доступно измерение лишь предельно обобщенных определений, в которых исчезают все индивидуальные свойства и характерные отличия конкретных единичных вещей. В самом деле, когда ротный старшина выстраивает новобранцев по ранжиру, в расчет принимается только их рост. Все остальное: цвет волос, сложение и уж тем более такие начала, как характер, интеллект, образование и так далее отходит куда-то далеко на задний план. Когда мы говорим: «два дня пути», забывается о том, что оба дня состоят из рассветов и закатов, дневной суеты, вечернего умиротворения и так далее, остается некая «чистая» длительность и только.

Но перед нами-то стоит задача количественного соизмерения не только тех свойств, которые все еще сохраняются на самой вершине пирамиды, но и индивидуальных характеристик вещей, явлений, процессов, тяготеющих к самому ее основанию. Другими словами, измерения не умозрительных абстракций, но вполне осязаемых вещей. (Кстати, осязаемых не только кожным покровом, но и покровом нравственного чувства, ибо те же офицерские погоны – вовсе не умозрительность, но вполне осязаемое и этой тонкой метафизической сенсорикой начало.)

42

См. Обзор истории математики // Стройк Д.Я. Краткий очерк истории математики. – М.: Наука, 1984.

Основы организации мышления, или Сколько будет 2+2

Подняться наверх