Нечеткая логика
Реклама. ООО «ЛитРес», ИНН: 7719571260.
Оглавление
Феликс Ланге. Нечеткая логика
Ввдение
От автора
Глава I. Оттенки серого
Глава II. Принципы нечеткой логики
Глава III. Части целого
Глава IV. Аристотель против Будды
Глава V. Что есть истина?
Глава VI. Парадоксы
Глава VII. Жизнь и смерть
Глава VIII. Человек и Бог
Заключение
Отрывок из книги
Книга, которую вы держите в руках, – повествование о нечеткой логике. Нечеткая логика – это раздел многозначной логики, который базируется на обобщении классической логики и теории нечётких множеств, предложенной американским математиком Лотфи Заде. Взяв старт в 1965 году нечеткая логика прошла путь от почти антинаучной теории, практически отвергнутой в Европе и США, до сегодняшних дней, когда она получила признание. Нечеткая логика возникла как наиболее удобный способ построения систем управления сложными технологическими процессами, а также нашла применение в бытовой электронике, диагностических и других экспертных системах. Необходимость ее внедрения была вызвана возросшим недовольством машинным интеллектом электронных приборов. Для создания действительно интеллектуальных систем, способных адекватно взаимодействовать с человеком, был необходим новый математический аппарат, способный переводить неоднозначные жизненные утверждения на язык четких и формальных математических формул. Нечеткая логика продемонстрировала ряд многообещающих возможностей применения – от систем управления летательными аппаратами до прогнозирования итогов выборов.
Нечеткая логика основана на использовании таких оборотов языка, как «далеко», «близко», «холодно», «горячо». Чтобы использовать теорию нечеткости на компьютерах, необходимы математические преобразования, позволяющие перейти от лингвистических переменных к их числовым аналогам в электронных приборах.
.....
Парадокс лжеца: «То, что я утверждаю сейчас, – ложно». Соответственно, получается, что либо «Я лгу», либо «Данное высказывание – ложь». Если высказывание истинно, получается, что, исходя из его содержания, верно то, что данное высказывание – ложь; но если оно ложь, в таком случае получается, что неверно то, что оно утверждает; значит, данное высказывание истинно. Таким образом, цепочка рассуждений возвращается в начало.
Далее Рене Декарт глубоко размышлял об идентичности между объектами, пытаясь найти то самое вещество, которое находилось между тем, как кусочек воска растает и перестанет им быть. Немецкий физик Вернер Гейзенберг показал, что не все научные утверждения либо истинны, либо ложны. Многие, если не большинство утверждений – неопределенны и неточны, они – серо-нечеткие. Бертран Рассел объяснил на основе математики парадокс лжеца, существующий с античных времен. Рассел использовал нестрогое условие «я лгу, но не всегда». Таким образом парадокс перестает быть парадоксом. С тех пор математики и философы пытались исправить эти черно-белые основы, чтобы избавиться от серых парадоксов. Но парадоксы и рассуждения о них все еще имеют место.
.....