Читать книгу Physiology and Hygiene for Secondary Schools - Francis M. Walters - Страница 7

CHAPTER V - THE CIRCULATION

Оглавление

Table of Contents

A Carrier must move. To enable the blood to carry food and oxygen to the cells and waste materials from the cells, and also to distribute heat, it is necessary to keep it moving, or circulating, in all parts of the body. So closely related to the welfare of the body is the circulation17 of the blood, that its stoppage for only a brief interval of time results in death.

Discovery of the Circulation.—The discovery of the circulation of the blood was made about 1616 by an English physician named Harvey. In 1619 he announced it in his public lectures and in 1628 he published a treatise in Latin on the circulation. The chief arguments advanced in support of his views were the presence of valves in the heart and veins, the continuous movement of the blood in the same direction through the blood vessels, and the fact that the blood comes from a cut artery in jets, or spurts, that correspond to the contractions of the heart.

No other single discovery with reference to the human body has proved of such great importance. A knowledge of the nature and purpose of the circulation was the necessary first step in understanding the plan of the body and the method of maintaining life, and physiology as a science dates from the time of Harvey's discovery.

Organs of Circulation.—The organs of circulation, or blood vessels, are of four kinds, named the heart, the arteries, the capillaries, and the veins. They serve as [pg 041]contrivances both for holding the blood and for keeping it in motion through the body. The heart, which is the chief organ for propelling the blood, acts as a force pump, while the arteries and veins serve as tubes for conveying the blood from place to place. Moreover, the blood vessels are so connected that the blood moves through them in a regular order, performing two well-defined circuits.


Fig. 13—Heart in position in thoracic cavity. Dotted lines show positin of diaphragm and of margins of lungs.

The Heart.—The human heart, roughly speaking, is about the size of the clenched fist of the individual owner. It is situated very near the center of the thoracic cavity and is almost completely surrounded by the lungs. It is cone-shaped and is so suspended that the small end hangs downward, forward, and a little to the left. When from excitement, or other cause, one becomes conscious of the movements of the heart, these appear to be in the left portion of the chest, a fact which accounts for the erroneous impression that the heart is on the left side. The position of the heart in the cavity of the chest is shown in Fig. 13.

The Pericardium.—Surrounding the heart is a protective covering, called the pericardium. This consists of a closed membranous sac so arranged as to form a double covering around the heart. The heart does not lie inside[pg 042] of the pericardial sac, as seems at first glance to be the case, but its relation to this space is like that of the hand to the inside of an empty sack which is laid around it (Fig. 14). The inner layer of the pericardium is closely attached to the heart muscle, forming for it an outside covering. The outer layer hangs loosely around the heart and is continuous with the inner layer at the top. The outer layer also connects at certain places with the membranes surrounding the lungs and is attached below to the diaphragm. Between the two layers of the pericardium is secreted a liquid which prevents friction from the movements of the heart.


Fig. 14—Diagram of section of the pericardial sac, heart removed. A. Place occupied by the heart. B. Space inside of pericardial sac. a. Inner layer of pericardium and outer lining of heart. b. Outer layer of pericardium. C. Covering of lung. D. Diaphragm.

Cavities of the Heart.—The heart is a hollow, muscular organ which has its interior divided by partitions into four distinct cavities. The main partition extends from top to bottom and divides the heart into two similar portions, named from their positions the right side and the left side. On each side are two cavities, the one being directly above the other. The upper cavities are called auricles and the lower ones ventricles. To distinguish these cavities further, they are named from their positions the right auricle and the left auricle, and the right ventricle and the left ventricle (Fig. 15). The auricles on each side communicate with the ventricles below; but after birth there is no communication between the cavities on the opposite sides of the heart. All the cavities of the heart are lined with a smooth, delicate membrane, called the endocardium.


Fig. 15—Diagram showing plan of the heart. 1. Semilunar valves. 2. Tricuspid valve. 3. Mitral valve. 4. Right auricle. 5. Left auricle. 6. Right ventricle. 7. Left ventricle. 8. Chordæ tendineæ. 9. Inferior vena cava. 10. Superior vena cava. 11. Pulmonary artery. 12. Aorta. 13. Pulmonary veins.

[pg 043]Valves of the Heart.—Located at suitable places in the heart are four gate-like contrivances, called valves. The purpose of these is to give the blood a definite direction in its movements. They consist of tough, inelastic sheets of connective tissue, and are so placed that pressure on one side causes them to come together and shut up the passageway, while pressure on the opposite side causes them to open. A valve is found at the opening of each auricle into the ventricle, and at the opening of each ventricle into the artery with which it is connected.

The valve between the right auricle and the right ventricle is called the tricuspid valve. It is suspended from a thin ring of connective tissue which surrounds the opening, and its free margins extend into the ventricle (Fig. 16). It consists of three parts, as its name implies, which are thrown together in closing the opening. Joined to the free edges of this valve are many small, tendinous cords which connect at their lower ends with muscular pillars in the walls of the ventricle. These are known as the chordæ tendineæ, or heart tendons. Their purpose is to serve as valve stops, to prevent the valve from being thrown, by the force of the blood stream, back into the auricle.

The mitral, or bicuspid, valve is suspended around the opening between the left auricle and the left ventricle,[pg 044] with the free margins extending into the ventricle. It is exactly similar in structure and arrangement to the tricuspid valve, except that it is stronger and is composed of two parts instead of three.


Fig. 16—Right side of heart dissected to show cavities and valves. B. Right semilunar valve. The tricuspid valve and the chordæ tendineæ shown in the ventricle.

The right semilunar valve is situated around the opening of the right ventricle into the pulmonary artery. It consists of three pocket-shaped strips of connective tissue which hang loosely from the walls when there is no pressure from above; but upon receiving pressure, the pockets fill and project into the opening, closing it completely (Fig. 16). The left semilunar valve is around the opening of the left ventricle into the aorta, and is similar in all respects to the right semilunar valve.

Differences in the Parts of the Heart.—Marked differences are found in the walls surrounding the different cavities of the heart. The walls of the ventricles are much thicker and stronger than those of the auricles, while the walls of the left ventricle are two or three times thicker than those of the right. A less marked but similar difference exists between the auricles and also between the valves on the two sides of the heart. These differences in structure are all accounted for by the work done by the different portions of the heart. The greater the work, the heavier the structures that perform the work.


Fig. 17—Diagram of the circulation, showing in general the work done by each part of the heart. The right ventricle forces the blood through the lungs and into the left auricle. The left ventricle forces blood through all parts of the body and back to the auricle. The auricles force blood into the ventricles.

[pg 045]Connection with Arteries and Veins.—Though the heart is in communication with all parts of the circulatory system, it makes actual connection with only a few of the blood tubes. These enter the heart at its upper portion (Fig. 15), but connect with its different cavities as follows:

1. With the right auricle, the superior and the inferior venæ cavæ and the coronary veins. The superior vena cava receives blood from the head and the upper extremities; the inferior vena cava, from the trunk and the lower extremities; and the coronary veins, from the heart itself.

2. With the left auricle, the four pulmonary veins. These receive blood from the lungs and empty it into the left auricle.

3. With the right ventricle, the pulmonary artery. This receives blood from the heart and by its branches distributes it to all parts of the lungs.

4. With the left ventricle, the aorta. The aorta receives blood from the heart and through its branches delivers it to all parts of the body.

How the Heart does its Work.—The heart is a muscular pump18 and does its work through the contracting and[pg 046] relaxing of its walls. During contraction the cavities are closed and the blood is forced out of them. During relaxation the cavities open and are refilled. The valves direct the flow of the blood, being so arranged as to keep it moving always in the same direction (Fig. 17).

The heart, however, is not a single or a simple pump, but consists in reality of four pumps which correspond to its different cavities. These connect with each other and with the blood vessels over the body in such a manner that each aids in the general movement of the blood.


Fig. 18—Diagram illustrating the "cardiac cycle."

Work of Auricles and Ventricles Compared.—In the work of the heart the two auricles contract at the same time—their contraction being followed immediately by the contraction of both ventricles. After the contraction of the ventricles comes a period of rest, or relaxation, about equal in time to the period of contraction of both the auricles and the ventricles.19 On account of the work which they perform, the auricles have been called the "feed pumps" of the heart; and the ventricles, the "force pumps."20 It is the function of the auricles to collect the blood from the veins, to let this run slowly into the ventricles when both the[pg 047] auricles and ventricles are relaxed, and finally, by contracting, to force an excess of blood into the ventricles, thereby distending their walls. The ventricles, having in this way been fully charged by the auricles, now contract and force their contents into the large arteries.

Sounds of the Heart.—Two distinct sounds are given out by the heart as it pumps the blood. One of them is a dull and rather heavy sound, while the other is a short, sharp sound. The short sound follows quickly after the dull sound and the two are fairly imitated by the words "lūbb, dŭp." While the cause of the first sound is not fully understood, most authorities believe it to be due to the contraction of the heart muscle and the sudden tension on the valve flaps. The second sound is due to the closing of the semilunar valves. These sounds are easily heard by placing an ear against the chest wall. They are of great value to the physician in determining the condition of the heart.

Arteries and Veins.—These form two systems of tubes which reach from the heart to all parts of the body. The arteries receive blood from the heart and distribute it to the capillaries. The veins receive the blood from the capillaries and return it to the heart. The arteries and veins are similar in structure, both having the form of tubes and both having three distinct layers, or coats, in their walls. The corresponding coats in the arteries and veins are made up of similar materials, as follows:

1. The inner coat consists of a delicate lining of flat cells resting upon a thin layer of connective tissue. The inner coat is continuous with the lining of the heart and provides a smooth surface over which the blood glides with little friction.

2. The middle coat consists mainly of non-striated, or involuntary, muscular fibers. This coat is quite thin in the veins, but in the arteries it is rather thick and strong.

3. The outer coat is made up of a variety of connective[pg 048] tissue and is also much thicker and stronger in the arteries than in the veins.


Fig. 19—Artery dissected to show the coats.

Marked differences exist between the arteries and the veins, and these vessels are readily distinguished from each other. The walls of the arteries are much thicker and heavier than those of the veins (Fig. 19). As a result these tubes stand open when empty, whereas the veins collapse. The arteries also are highly elastic, while the veins are but slightly elastic. On the other hand, many of the veins contain valves, formed by folds in the inner coat (Fig. 20), while the arteries have no valves. The blood flows more rapidly through the arteries than through the veins, the difference being due to the fact that the system of veins has a greater capacity than the system of arteries.


Fig. 20—Vein split open to show the valves.

Why the Arteries are Elastic.—The elasticity of the arteries serves a twofold purpose. It keeps the arteries from bursting when the blood is forced into them from the ventricles, and it is a means of supplying pressure to the blood while the ventricles are in a condition of relaxation. The latter purpose is accomplished as follows:

Contraction of the ventricles fills the arteries overfull, causing them to swell out and make room for the excess of blood. Then while the ventricles are resting and filling, the stretched arteries press upon the blood to keep it[pg 049] flowing into the capillaries. In this way they cause the intermittent flow from, the heart to become a steady stream in the capillaries.

The swelling of the arteries at each contraction of the ventricle is easily felt at certain places in the body, such as the wrist. This expansion, known as the "pulse," is the chief means employed by the physician in determining the force and rapidity of the heart's action.

Purpose of the Valves in the Veins.—The valves in the veins are not used for directing the general flow of the blood, the valves of the heart being sufficient for this purpose. Their presence is necessary because of the pressure to which the veins are subjected in different parts of the body. The contraction of a muscle will, for example, close the small veins in its vicinity and diminish the capacity of the larger ones. The natural tendency of such pressure is to empty the veins in two directions—one in the same direction as the regular movement of the blood, but the other in the opposite direction. The valves by closing cause the contracting muscle to push the blood in one direction only—toward the heart. The valves in the veins are, therefore, an economical device for enabling variable pressure in different parts of the body to assist in the circulation. Veins like the inferior vena cava and the veins of the brain, which are not compressed by movements of the body, do not have valves.

Purposes of the Muscular Coat.—The muscular coat, which is thicker in the arteries than in the veins and is more marked in small arteries than in large ones, serves two important purposes. In the first place it, together with the elastic tissue, keeps the capacity of the blood vessels equal to the volume of the blood. Since the blood vessels are capable of holding more blood than may be[pg 050] present at a given time in the body, there is a liability of empty spaces occurring in these tubes. Such spaces would seriously interfere with the circulation, since the heart pressure could not then reach all parts of the blood stream. This is prevented by the contracted state, or "tone," of the blood vessels, due to the muscular coat.

In the second place, the muscular coat serves the purpose of regulating the amount of blood which any given organ or part of the body receives. This it does by varying the caliber of the arteries going to the organ in question. To increase the blood supply, the muscular coat relaxes. The arteries are then dilated by the blood pressure from within so as to let through a larger quantity of blood. To diminish the supply, the muscle contracts, making the caliber of the arteries less, so that less blood can flow to this part of the body. Since the need of organs for blood varies with their activity, the muscular coat serves in this way a very necessary purpose.


Fig. 21—Diagram of network of capillaries between a very small artery and a very small vein. Shading indicates the change of color of the blood as it passes through the capillaries. S. Places between capillaries occupied by the cells.

Capillaries.—The capillaries consist of a network of minute blood vessels which connect the terminations of the smallest arteries with the beginnings of the smallest veins (Fig. 21). They have an average diameter of less than one two-thousandth of an inch (12 µ) and an average length of less than one twenty-fifth of an inch (1 millimeter). Their walls consist of a single [pg 051] coat which is continuous with the lining of the arteries and veins. This coat is formed of a single layer of thin, flat cells placed edge to edge (Fig. 22). With a few exceptions, the capillaries are found in great abundance in all parts of the body.


Fig. 22—Surface of capillary highly magnified, showing its coat of thin cells placed edge to edge.

Functions of the Capillaries.—On account of the thinness of their walls, the capillaries are able to serve a twofold purpose in the body:

1. They admit materials into the blood vessels.

2. They allow materials to pass from the blood vessels to the surrounding tissues.

When it is remembered that the blood, as blood, does not escape from the blood vessels under normal conditions, the importance of the work of the capillaries is apparent. To serve its purpose as a carrier, there must be places where the blood can load up with the materials which it is to carry, and places also where these can be unloaded. Such places are supplied by the capillaries.

The capillaries also serve the purpose of spreading the blood out and of bringing it very near the individual cells in all parts of the body (Fig. 21).

Functions of Arteries and Veins.—While the capillaries provide the means whereby materials may both enter and leave the blood, the arteries and veins serve the general purpose of passing the blood from one set of capillaries to another. Since pressure is necessary for moving the blood, these tubes must connect with the source of the pressure, which is the heart. In the arteries and veins the blood neither receives nor gives up material, but having received or given up material at one set of capillaries, it is then pushed through these tubes to where it can serve a similar purpose in another set of capillaries (Fig. 23).

Divisions of the Circulation.—Man, in common with all warm-blooded animals, has a double circulation, a fact[pg 052] which explains the double structure of his heart. The two divisions are known as the pulmonary and the systemic circulations. By the former the blood passes from the right ventricle through the lungs, and is then returned to the left auricle; by the latter it passes from the left ventricle through all parts of the body, returning to the right auricle.

The general plan of the circulation is indicated in Fig. 23. All the blood flows continuously through both circulations and passes the various parts in the following order: right auricle, tricuspid valve, right ventricle, right semilunar valve, pulmonary artery and its branches, capillaries of the lungs, pulmonary veins, left auricle, mitral valve, left ventricle, left semilunar valve, aorta and its branches, systemic capillaries, the smaller veins, superior and inferior venæ cavæ, and then again into the right auricle.

In the pulmonary capillaries the blood gives up carbon dioxide and receives oxygen, changing from a dark red to a bright red color. In the systemic capillaries it gives up oxygen, receives carbon dioxide and other impurities, and changes back to a dark red color.

In addition to the two main divisions of the circulation, special circuits are found in various places. Such a circuit in the liver is called the portal circulation, and another in the kidneys is termed the renal circulation. To some extent the blood supply to the walls of the heart is also outside of the general movement; it is called the coronary circulation.


Fig. 23—General scheme of the circulation, showing places where the blood takes on and gives off materials. 1. Body in general. 2. Lungs. 3. Kidneys. 4. Liver. 5. Organs of digestion. 6. Lymph ducts. 7. Pulmonary artery. 8. Aorta.

Blood Pressure and Velocity.—The blood, in obedience to physical laws, passes continuously through the blood vessels, moving always from a place of greater to one of less pressure. Through the contraction of the ventricles, a relatively high pressure is maintained in the arteries nearest the heart.21 This pressure diminishes rapidly in the[pg 054] small arteries, becomes comparatively slight in the capillaries, and falls practically to nothing in the veins. Near the heart in the superior and inferior venæ cavæ, the pressure at intervals is said to be negative. This means that the blood from these veins is actually drawn into the right auricle by the expansion of the chest walls in breathing.22

The velocity of the blood is greatest in the arteries, less in the veins, and much less in the capillaries than in either the arteries or the veins. The slower flow of the blood through the capillaries is accounted for by the fact that their united area is many times greater than that of the arteries which supply, or the veins which relieve, them. This allows the same quantity of blood, flowing through them in a given time, a wider channel and causes it to move more slowly. The time required for a complete circulation is less than one minute.

Summary of Causes of Circulation.—The chief factor in the circulation of the blood is, of course, the heart. The ventricles keep a pressure on the blood which is sufficient to force it through all the blood tubes and back to the auricles. The heart is aided in its work by the elasticity of the arteries, which keeps the blood under pressure while the ventricles are in a state of relaxation. It is also aided by the muscles and elastic tissue in all of the blood vessels. These, by keeping the blood vessels in a state of "tone," or so contracted that their capacity just equals the volume of the blood, enable pressure from the heart to be transmitted to all parts of the blood stream. A further aid to the circulation is found in the valves in the veins, which enable muscular contraction within the body, and variable pressure upon its surface, to drive the blood toward the heart. The heart is also aided to some extent by the movements of the chest walls in breathing. The organs Of circulation are under the control of the nervous system (Chapter XVIII).

[pg 055]

Physiology and Hygiene for Secondary Schools

Подняться наверх