Читать книгу Mammalia - Frank E. Beddard - Страница 5

CHAPTER II STRUCTURE AND PRESENT DISTRIBUTION OF THE MAMMALIA

Оглавление

External Form.—It would be quite impossible for any one to confuse any other quadrupedal animal with a mammal. The body of a reptile is, as it were, slung between its limbs, like the body of an eighteenth century chariot between its four wheels; in the mammal the body is raised entirely above, and is supported by, the four limbs. The axes of these limbs too, as a general rule, are parallel with the vertical axis of the body of their possessor. There is thus a greater perfection of the relations of the limbs to the trunk from the point of view of a terrestrial creature, which has to use those limbs for rapid movement. The same perfection in these relations is to be seen, it should be observed, in such running forms among the lower Vertebrata as the Birds and the Dinosaurs, where the actual angulation of the limbs is as in the purely running Mammalia. These relations are of course absolutely lost in the aquatic Cetacea, and not marked in various burrowing creatures. The way in which the fore- and hind-limbs are angulated is considerably different in the two cases. In the latter, which are most used and, as it were, push on the anterior part of the body, the femur has its lower end directed forwards, the tibia and the fibula project backwards at the lower end, while the ankle and foot are again inclined in the same direction as the femur. With the fore-limbs there is not this regular alternation. The humerus is directed backwards, the fore-arm forwards, and the hand still more forwards. This angulation seems to facilitate movement, inasmuch as it is seen in even the Amphibia and the lower Reptiles, in which, however, the differences between the fore- and hind-limbs are less marked, indicating therefore a less specialised condition of the limbs. It is an interesting fact that the angulation of the limbs is to some extent obliterated in very bulky creatures, and almost entirely so in the elephants (see p. 217), which seem to need strong and straight pillars for the due support of their huge bodies.

The alertness and general intellectual superiority of mammals to all animals lying below them in the series (with the exception of the birds, which are in their way almost on a level with the Mammalia) are seen by their active and continuous movements. The lengthy periods of absolute motionlessness, so familiar to everybody in such a creature as the Crocodile, are unknown among the more typical Mammalia except indeed during sleep. This mental condition is clearly shown by the proportionate development of the external parts of all the organs of the higher senses. The Mammalia as a rule have well-developed, often extremely large, flaps of skin surrounding the entrance to the organ of hearing, often called "ears," but better termed "pinnae." These are provided with special muscles, and can be often moved and in many directions. The nose is always, or nearly always, very conspicuous by its naked character; by the large surface, often moist, which surrounds the nostrils; and again by the muscles, which enable this tract of the integument to be moved at will. The eyes, perhaps, are less marked in their predominance over the eyes of lower Vertebrates than are the ears and nose; but they are provided as a rule with upper and lower eyelids, as well as by a nictitating membrane as in lower Vertebrates. The apparent predominance of the senses of smell and hearing over that of sight appears to be marked in the Mammalia, and may account for their diversity of voice as well as of odour, and for the general sameness of coloration which distinguishes this group from the brilliantly-coloured birds and reptiles. The head, too, which bears these organs of special sense, is more obviously marked out from the neck and body than is the case with the duller creatures occupying the lower branches of the Vertebrate stem.

Fig. 1.—A, Section of human skin. Co, Dermis; D, sebaceous glands; F, fat in dermis; G, vessels in dermis; GP, vascular papillae; H, hair; N, nerves in dermis; NP, nervous papillae; Sc, horny layer of epidermis; SD, sweat gland; SD1, duct of sweat gland; SM, Malpighian layer. B, Longitudinal section through a hair (diagrammatic). Ap, Band of muscular fibres inserted into the hair-follicle; Co, corium (dermis); F, external longitudinal; F1, internal circular, fibrous layer of follicle; Ft, fatty tissue in the dermis; GH, hyaline membrane between the root-sheath and the follicle; HBD, sebaceous gland; HP, hair-papilla with vessels in its interior; M, medullary substance (pith) of the hair; O, cuticle of root-sheath; R, cortical layer; Sc, horny layer of epidermis; Sch, Hair shaft; SM, Malpighian layer of epidermis; WS, WS1, outer and inner layers of root-sheath. (From Wiedersheim's Comparative Anatomy.)

The Hair.—The Mammalia are absolutely distinguished from all other Vertebrates (or, for the matter of that, Invertebrates) by the possession of hair. To define a mammal as a Vertebrate with hair would be an entirely exclusive definition; even in the smooth Whales a few hairs at least are present, which may be reduced to as few as two bristles on the lips. The term "hair," however, is apt to be somewhat loosely applied; it has been made use of to describe, for example, the slender processes of the chitinous skin of the Crustacea. It will be necessary, therefore, to enter into the microscopical structure and development of the mammalian hair. Hair is found in every mammal. The first appearance of a hair is a slight thickening of the stratum Malpighii of the epidermis, the cells taking part in this being elongated and converging slightly above and below. Dr. Maurer has called attention to the remarkable likeness between the embryonic hair when at this stage and the simple sense-organs of lower Vertebrates. Later there is formed below this a denser aggregation of the corium, which ultimately becomes the papilla of the hair. This is the apparent homologue of the first formed part of a feather, which projects as a papilla before the epidermis has undergone any modification. Hence there is from the very first a difference between feathers and hairs—a difference which must be carefully borne in mind, especially when we consider the strong superficial resemblance between hairs and the simple barbless feathers. Still later the knob of epidermic cells becomes depressed into a tubular structure, which is lined with cells also derived from the stratum Malpighii, but is filled with a continuation of the more superficial cells of the epidermis. This is the hair-follicle, and from the epidermic cells arises the hair by direct metamorphosis of those cells; there is no excretion of the hair by the cells, but the cells become the hair. From the hair-follicle also grows out a pair of sebaceous glands, which serve to keep the fully-formed hair moist.

Mammalia

Подняться наверх