Читать книгу Virolution - Frank Ryan - Страница 10

3 The Genetic Web of Life 1

Оглавление

Sit down before fact as a little child, be prepared to give up every preconceived notion, follow humbly wherever and to whatever abysses nature leads, or you shall learn nothing.

THOMAS HENRY HUXLEY2

When, on a hot afternoon in September 1994, I arrived at the Rockefeller University, New York, with an appointment to interview its distinguished president, and Nobel Laureate, Joshua Lederberg, I considered myself fortunate that he had agreed to see me, since he was one of the busiest men I was ever likely to meet. The meeting with Terry Yates, two months earlier, had radically altered my perspective on viruses, and, on my return to England, I had consumed what literature I could lay my hands on concerning what for me was a new topic of inspiration – the possibility that what we were observing in pandemic plagues, including AIDS, might best be interpreted as evolutionary phenomena. I had arrived early so I took a walk down York Avenue to 68th Street, turning towards the river by the twin-fronted colossus of the New York Hospital, until I reached a low concrete parapet on which I could lean and gaze out over the wide East River, with its turbid, black-green water.

I had been here once before, while working on my book on tuberculosis, and the sight of the hospital brought back poignant memories. Rene Dubos, a scientist I greatly admired, had worked at the Rockefeller University for most of his life. A scientist-philosopher, and twice a Pulitzer Prize winner for his writing, Dubos was one of the most original thinkers among the scientists involved in the antibiotic story. He had pioneered the discovery of the soil-derived antibiotics, such as streptomycin and neomycin, and had played an important part in the discovery of the cure for tuberculosis. I knew that it was my writing about Dubos in my book on tuberculosis that had opened Lederberg’s door to my interviewing him. But Dubos’s contribution to the discovery of antibiotics, and the cure for tuberculosis, had ended abruptly, and tragically, right here, in the New York Hospital, where his first wife, Marie Louise, had died from the disease. I couldn’t help reflecting now on Dubos, and his highly original way of thinking about microbes, including viruses, as I gazed upriver towards the looming ironwork of the Queens-boro Bridge. Viruses appeared to be omnipresent. In fact, whenever we bothered to probe any life form on Earth for the presence of viruses, we seemed to find them. It made little sense that at this time only some 5,000 strains, or species equivalents, of viruses were known. Only recently had we discovered that viruses teemed in the oceans, where we had little or no knowledge of what they were doing – yet the vast numbers alone suggested that their presence was significant. We knew, by now, that most, if not all, life forms had viruses that invaded them, and, given that there were millions of different species inhabiting the Earth, it was clear that our knowledge of viruses, even at this very basic level, was inadequate. Those two months of intense background reading and research had convinced me of this. It had also convinced me that, in our blinkered vision of viruses, we were missing something very important. These questions troubled me as I stood in Founders’ Hall, pausing in the reception area before a painting of its first medical director, Simon Flexner, who had earned a distinction that perhaps only a doctor would appreciate – of having the dysentery bacterium, Shigella flexneri, named after him. I climbed into a battered green-and-black elevator old enough to have been familiar to Flexner, and I widened my stance, a trifle warily, as it rattled and groaned on its way to the fourth floor.

I shook hands with Lederberg in a room cluttered with boxes of scientific papers and lantern slides, its walls be-decked with a proliferation of certificates and diplomas. He sat down opposite me, bald-headed and stolid as a Buddha. ‘Well,’ he remarked, his eyes following my gaze with a slight twinkle, ‘they are rather an idiosyncratic collection … I got to microbiology through genetics – through biochemical genetics in particular. My first experience in that area was with your namesake, Francis Ryan, who was my mentor at Columbia University. You don’t have Joseph after your first name?’

I shook my head.

‘A wonderful man. He was the first post-doc to join Beadle and Tatum in their laboratory at Stanford at the very beginnings of biochemical genetics. He was working on mutations leading to nutritional deficiency in Neurospora. I entered Columbia College in 1941. Francis was away that year, but Beadle and Tatum’s paper had just been published and I knew he was there. I just waited for him to come back and pounced on him in his laboratory.’

We had already taken our seats, among the piles of journals and papers as I inched the line of conversation along. ‘But there must have been something even before that that made you go to college with this interest?’

‘Well, that’s a somewhat broader canvas. I can’t give you the ultimate answers to that question. But from the very beginnings of my recollection, from when I was about five years old, I recall that I was devoted to science. I had no doubt I was going into science, probably medical science, so I prepared myself for it.’

‘Was there a history of science in your family?’

‘Not at all. My father was an Orthodox rabbi. I don’t think there was a total disconnection between his vocation and mine, but there was a generational polarity.’

I paused to consider this curious phrase. ‘Perhaps what you had in common was a certain preparedness to discuss life, and perhaps a philosophical attitude of mind might have contributed?’

‘Oh, I think so. Issues of learning, of enquiring … A life in discovery was compatible with my secularism.’

‘Can I ask another question? How old were you when you were awarded the Nobel Prize?’

‘I was 33. They took their time about the award. I was 21 when I did the work.’

Of course, I already knew that the youthful Lederberg began medical studies at Columbia’s College of Physicians and Surgeons, but even then he was inspired by Oswald Avery’s work at the Rockefeller University, which had led Avery to propose that DNA, and not the widely assumed protein, was the gold dust of heredity. This had been critical to Watson and Crick’s later discovery of the chemical structure of DNA, which transformed genetics and our understanding of evolutionary biology. And Joshua Lederberg had played his part in this fabulous story.

Even as a student, he had refused to believe the widely held opinion that bacteria only made identical genetic copies of themselves. It was why he had written to Edward Tatum, Ryan’s postdoctoral mentor at Yale University, asking if he could come and work with them. The first publication to come out of this collaboration was in the names of Lederberg and Tatum and covered less than half a page in the letters columns of the journal Nature, on 19 October 1946. It carried the title “Gene Recombination in Escherichia coli” – E coli being a common bowel bacterium – and it proved, for the first time, that bacteria can pass on genetic information from one strain to another, a process we now call “bacterial conjugation”.3 In this sense the word “conjugation” is from the same stem as our human term for the “conjugal” rights of marriage. Indeed, at the close of the paper, Tatum and Lederberg had made it perfectly explicit that “These experiments imply the occurrence of a sexual process in the bacterium.”

The piquant truth is that Joshua Lederberg was awarded the Nobel Prize for the discovery of sexual relationships between bacteria.

Sex is a perfectly normal, evolved, behaviour, which is found, sometimes accompanied by beguiling mating rituals, in virtually all animals as well as plants and simpler life forms. The fact that bacteria use a sexual process to swap genetic information is important to medicine, explaining some instances of bacterial resistance to antibiotics. And this topic afforded a perfect springboard for the deeper explorations of our conversation, which lasted most of the afternoon. I was fascinated, in particular, by his long-held view that ‘terrestrial life is a dense web of genetic inter-reactions’. I was keen to hear more of what he meant by the expression.

Perhaps, he suggested, we should look at living organisms as metabolic nets, capable of reaching out and accepting help, at chemical or even genetic level, from other life forms. ‘On the one hand, each life form is coded by its own genetic make-up, but there is an interdependence there. We can’t survive without taking advantage of the genetic machinery of plants.’ Of course, he was referring to photosynthesis, which enables plants to make sugars and amino acids that animals, such as we humans, rely on for life. ‘So, in this sense,’ he insisted, ‘we are symbiotic with plant genes.’

I was interested in his evocation of the concept of symbiosis. It reminded me of the fact that he had referred to symbiosis again and again, in the headings and subject matter of his book chapters and scientific publications. This suggested that he had given careful thought to its role in life.4

‘There are,’ he explained, ‘marine invertebrate animals that have carried this further, so that instead of bothering to eat plants they embrace algae living inside their skin. Many of the well-known bacterial symbioses with insects are not so fundamentally different from that. In these cases there is an integration of genetic machinery, even though the interacting genomes are still distinct. The symbionts are in different cells, and they could be parted asunder. But I see a continuum between that phenomenon and the kinds of symbiosis where the two organisms occupy the same cell, such as we see in plants with their chloroplasts. It’s not so difficult to extrapolate from that to the evolution of invertebrates, where you have algae living in the epidermal cells. But what we find in the chloroplast has taken the concept further. The primordial chloroplast has itself exchanged considerable numbers of genes with the nucleus. Meanwhile, some genes that were undoubtedly nuclear have found their way into the chloroplasts. So these have not been pure genomes for many aeons.’

I suggested that these ideas would surprise many biologists, and geneticists, who were fixated on the idea of genes being handed down in a simple, vertical, way from parents to offspring.

‘You just need some scaffold to begin your thinking. Then the more you learn the more you realise that the exceptions are almost the rule.’

I was eager to extrapolate this line of reasoning to what really interested me at this stage. ‘The popular conception of a virus is something necessarily nasty, something that infects people and makes them ill – sometimes kills them. But can you conceive that viruses in nature might also have a symbiotic role with animals?’

I was well aware in asking this question that, as early as 1952, Lederberg had published a landmark paper under the title, “Cell genetics and hereditary symbiosis”.5 In this paper he had proposed a new scientific term, the “plasmid”, to cover all sorts of hereditary packages that crossed the genetic divide between different life forms. In this same paper, he stated outright that plasmids were symbiotic organisms that formed part of the genetic inheritance of the life form to which they contributed this new genetic information. From my perspective, this transfer of pre-evolved genetic information was quite different, from an evolutionary perspective, to the Darwinian concept of random changes in the coding sequences of genes arising through errors in copying DNA when cells divided.

He said: ‘It’s a very interesting question.’

We talked about how viruses could change the behaviour and internal chemistry of bacteria, for example by making them resistant to antibiotics. The diphtheria bacterium produced a poison, known as a toxin, which was entirely dependent on the presence of a virus within the bacterium.

So it was that our conversation moved round a topic that we both recognised as extremely important, if potentially very controversial.

I explained what I had learnt from the scientists investigating the hantavirus epidemic, for example the fact that baby deer mice are born without the virus. They acquired it as weanlings, from copious secretions of the virus in the urine and other excreta of the mother. Yet when they acquired this virus, which was so horribly lethal to people, they showed no sign of illness. It was as if, in first meeting the virus when their immune systems were just coming to recognise self from alien, they came to regard the virus as self. In fact, some of the biologists working on the virus-mouse interaction had the feeling that the baby mice grew bigger, stronger, as a result of the presence of the virus. I took a breath and asked the question that had preoccupied my thoughts for the last two months.

‘I know that viruses don’t think. They don’t have a concept of good or bad – they’re not just immoral but amoral. But is it possible a virus could have a beneficial effect on an animal species?’ I should have known better than to use the word “beneficial”, since it is loaded with anthropomorphic overtones. What I meant, and should have asked, was if the presence of a virus might help the host survive.

‘Well, that would be interesting … I don’t know of a clear example of any such mutualistic advantage, but it’s on the cards. And if nothing else, cross-immunity to other infecting agents is certainly going to come into the picture. But I just don’t happen to have it at my fingertips for animals.’

I pushed it a little further. ‘I find myself asking the question, could a viral infection in a species change that species – could it go so far as to create a new species?’

It was probably the most challenging question I put to him, and it resulted in another of those telling pauses.

‘I can commend a book to you that has just come out. It answers the somewhat larger questions. It is by Jan Sapp and it covers symbiosis – the history of the concept.6 Jan is a historian of science from York University, in Canada. He was a visiting scholar here in my laboratory when he wrote the book. He’s been following the thinking of Lynn Margulis, who is probably the most articulate person on this line of thinking. You might have seen something of her writings. Where symbiosis leads to the convergence of two genomes from disparate sources, making, if you like, a very wide hybrid, it becomes the source of evolutionary change of the most major implications. There is a fair consensus now that this is how the eukaryotic cell evolved.’

The eukaryotic cell is a cell with a nucleus. The evolution of such a cell from humble bacterial forebears gave rise to all of the animals, plants, fungi, algae and smaller creatures, such as the amoebae of my school biology days. That same evolutionary step had been extolled by the eminent Darwinian, Ernst Mayr, as the single most important step in the evolution of life. If my interview with Terry Yates had first opened my eyes to the possibility of a new vision of viruses and their role in evolution, this interview with Joshua Lederberg had further encouraged that vision. I left New York more determined than ever to examine it further.

In the opening chapter I outlined a three-way symbiotic relationship between the sea slug Elysia chlorotica, its host alga, and an unknown, virus, putatively a retrovirus, that has entered into a persistent relationship with the slug. But back in 1994 I knew nothing about Elysia, and its relationship with the virus was poorly understood. The truth is that I was in the dark as far as symbiosis was concerned. I had no idea how this biological condition called symbiosis was defined. Did symbiosis imply a different evolutionary mechanism from the highly respected modern Darwinism? My conversation with Lederberg suggested that there were important differences between the two evolutionary disciplines, yet there was no hint that he felt these differences negated the conventional viewpoint. I was mindful of his words of advice: ‘You just need some scaffold to begin your thinking.’ My scaffold would be the biological discipline of symbiosis, and its many examples and operative mechanisms, focusing in particular on how symbiologists – the people who study symbiosis – figured that symbiosis operated as an evolutionary force.

Readers of Jan Sapp’s landmark history of symbiosis will discover how, in 1868, some nine years after Darwin had published The Origin of Species, a Swiss botanist, Simon Schwendener, made a curious discovery about the biological nature of lichens. We are familiar with lichens as the flat, pastel-shaded growths that decorate tombstones or the historic boulders of Stonehenge, but they are far more varied and ubiquitous than the cursory familiarity would suggest. They play an important role in the world’s ecology as pioneer organisms, thriving in inclement environments, such as sand-dunes or the windswept valleys of Antarctica, where they eke out a living on the exposed surfaces, breaking stone down into soil, or soaking up useful reservoirs of water from ambient dew or fog in forest ecologies. In this way, lichens create specialised ecosystems from which other life forms can benefit, for example the hardy growths that endure beneath the Arctic snow providing the main food source for the Sami’s reindeer. At the time of Schwendener’s discovery, lichens had only recently been slotted into place on the biological tree of life as a branch, in the jargon a “class”, of their own coming off the main trunk, or “kingdom”, of the plants, with naturalists devoting their time and energies to defining more than a thousand species that formed the twigs and leaves of that branch. Now, all of a sudden, such endeavour and certainty was thrown to the four winds when Schwendener demonstrated that lichens were not individual organisms at all but intimate associations of two radically different life forms, an alga and a fungus.

Since the time of Swedish naturalist, Carl Linnaeus, in the eighteenth century, biologists had assumed that all living organisms were discrete individuals, which existed as members of a species, which could be accurately assigned to its precise twig and leaf on the tree of life. We humans, for example, belong to the species sapiens, within the genus Homo, which is attached to the branchlet, or “order”, of primates, within the branch, or “class”, of mammals. But now it would appear that, rather than constituting any branch, or twig, or leaf, on the tree of life, lichens comprised an intimate intertwining of two of the main trunks – the kingdoms of the protists and fungi. For the orderly world of Victorian naturalists, the implications were devastating. Many lichenists refused to believe it and they roundly dismissed any such dualistic notions as an “abomination” that sowed confusion in place of order.

But despite the resistance, which endured in some quarters for almost half a century, study of the dual nature of lichens grew and spread, with some biologists, and botanists in particular, realising that lichens might not be the only example of an important association, or partnership, between very different living beings. This brought into sharp focus the concept of parasitism.

It was clear, from lichens, that the traditional idea of parasitism was inadequate to explain the real complexity of what studies were now revealing of the very close interdependency of the fungi and algae that made up the diverse group. Other examples of intimate interdependency of different life forms were duly recognised, from the coral reefs to forest oaks. In time the German botanist, Albert Bernhard Frank, would discover that virtually every plant was in partnership with a variety of fungi that fed into it, often physically invading the roots, so much so that the familiar root ball we shake out of its pot from the garden centre is largely fungus. The plant above ground supplies carbon compounds and energy to the fungus, while the fungus feeds water and minerals into the root. In the 17,000 or so species of orchids the relationship was so intimate that the fungus was found to supply the sprouting seed with carbon as well as water and electrolytes. The growing biological field demanded a formal name and definition and these were duly provided by another German botanist, Anton de Bary, who, in 1878, coined the term “symbiosis”, which he defined as “the living together of different organisms”.7 The definition was designed to embrace the many different associations already known to take place in nature, including parasitism, in which one of the partners gained at the expense of another, commensalism, where a partner gained without harming another, and mutualism, where more than one partner was seen to benefit from the relationship. The interacting partners became known as “symbionts” and the partnership, holistically, became known as the “holobiont”.

Over the years that followed, a dazzling variety of symbioses has been discovered in every ecological niche in nature, being particularly abundant in the flora and fauna of the oceans, including the very corals that manufacture the reefs, and the rainforests, with their fabulous diversity of life forms. It was assumed from the very beginning that such symbiotic relationships would have evolutionary implications for the participating partners, and in 1910 the term “symbiogenesis” was coined by the Russian biologist, Constantin Merezhkowskii, to define symbiosis acting as an evolutionary force.8

Today we recognise that symbiogenesis operates at several different levels. Most people are familiar with the cleaner station symbioses, where fierce predators, such as sharks and groupers, will patiently queue up at key sites on the ocean bottom and allow their skins, and even the interior of their mouths, to be cleaned of parasites and debris by smaller fish and shrimps. For obvious reasons this is known as a behavioural symbiosis. Metabolic symbioses involve the sharing of useful chemical products between the symbionts, as seen, for example, in the plant-fungal associations, or in the giant tube-worms, which inhabit the deep sea fissures, under the oceans. Here, along the volcanic summits, where tectonic plates are forming, the mouthless worms depend for their nutrition on symbiotic bacteria within their living tissues, and the bacteria, in turn, get their energy from the hydrogen sulphide that bubbles out of the “black smokers”. Many symbioses involve both behavioural and metabolic exchanges, for example the wide variety of pollination partnerships involving plants and insects, or hummingbirds, where the plant supplies the insects or birds with nectar, while the mobile partner carries pollen to other sedentary plants.

Symbiosis also works at a third, more powerful, level, where it is known as genetic symbiosis. This book started with a delightful enigma – the virally enabled transfer of genes necessary for photosynthesis across two kingdoms of life, as seen in the emerald-green sea slug, Elysia chlorotica. It would be surprising if biologists had not considered viruses as potential symbionts throughout the century or more that symbiology had grown and developed as a discipline. But readers will discover few references to viruses in Sapp’s book. In the decade after the Second World War, an American geneticist, Edgar Altenberg, had proposed a symbiotic “viroid” theory, based on the prevailing notions of the similarities of viruses to invisible “naked genes”, or plasmagenes, hidden in living cells. He conceived that viroids might have played a part in cellular evolution, and that cancer-causing viruses might arise de novo in every affected patient from viroids that had previously existed in the affected individual. Altenberg had conceived some startlingly original, even prophetic, insights – but he had been mistaken about the basic nature of viruses. Viruses are not naked genes. And his “viroid” concept was never embraced by the world of biology.

Ever the iconoclast, in the 1960s Rene Dubos also tried to persuade his virological colleagues to put aside their blinkered vision of viruses as nothing more than genetic parasites to consider that, in certain ecological conditions, they might sometimes enhance the host’s ability to survive. But back in the ’60s even the prescient Dubos had lacked the molecular technology necessary to prove his ideas to the world of science and so, once again, his colleagues had not been persuaded. From a wider reading of virological papers, I came across the occasional use of the term “symbiosis” in relation to viruses, sometimes with respect to the behaviour of whole viruses, whether infectious or incorporated into host genomes, and sometimes in relation to isolated genetic sequences derived from viruses. But none of the papers developed the term symbiosis in a way that would be accepted by the discipline of symbiology, which demanded a definition involving the interaction of living organisms, or life forms. The use of the term in relation to genetic sequences was clearly erroneous. And before we could even begin to make progress, from a definitional and developmental perspective, it would be essential to look very hard at the application of “organism” or “life form” to viruses.

Having taken Lederberg’s advice, I took pains over the years that followed to acquaint myself with how symbiosis was defined as a biological interaction, and in particular to how it worked as an evolutionary force. I read, and was enlightened by, the series of books and scientific papers of Lynn Margulis, distinguished Professor at Amherst, Massachusetts, who had played a central role in pioneering our understanding of symbiosis. I amassed a small library of other books, and papers, by symbiological colleagues throughout the century or so of the discipline’s history. I came to realise that many symbiologists misunderstood the essential nature of viruses, and this had given rise to erroneous assumptions, which in turn had delayed appreciation of their potential symbiotic role within the discipline. I thought I could see a way of accommodating the “organismal” or “life form” requirement. Even the most ardent of sceptics saw viruses as “coming alive” during their interaction with their hosts, and nobody denied that viruses were subject to the proven mechanics of Darwinian evolution. All biologists had to accept was that viruses should be defined in relation to their life cycles in their normal living ecology, and that such a definition allowed us to treat them as organisms or life forms from the evolutionary perspective – that small and seemingly reasonable step took me further towards a working definition that might be acceptable to both virology and symbiology. Through such research, and through a growing series of interviews with leading scientists within the two disciplines, I was in a stronger position to extrapolate a proven conceptual framework of symbiogenesis to viruses, and in particular to the potential contribution of viruses to symbiogenesis at genetic level. Meanwhile, it occurred to me that it might be useful to look at symbiosis from a Darwinian perspective.

Where Darwinian theory proposes an essentially linear pattern of evolution, with new species arising through branching divergence from ancestral stock, symbiosis involves a reticulate pattern of evolution through the partnership of different life forms, from species to whole kingdoms. On the face of it this would appear to suggest that symbiogenesis and Modern Darwinism have little in common. But this is not the case. In spite of the clear and important differences between the evolutionary mechanics that underlie the two evolutionary paradigms, symbiosis does not contradict evolutionary theory and it does not contradict Darwin’s concept of natural selection in particular. The crucial question we need to ask ourselves is not whether natural selection applies to the evolution of symbiotic relationships but rather how exactly it operates in circumstances where different life forms interact at a biologically meaningful level.

To put it bluntly – is there something different about the way in which natural selection works in symbiogenesis as opposed to mutation-plus-selection? Let us examine two familiar examples of symbiotic partnerships, and see if we can determine the answer.

Hummingbirds are native to the warmer parts of the Americas, where more than three hundred species depend on the nectar of flowers for their daily sustenance. The birds’ wings have been highly adapted by natural selection to allow them to hover, with pinpoint accuracy, over the flower, and their beaks have also become exceptionally long and shaped to fit the flower head, while their elongated tongues reach down into the well of nectar at the very bottom of the flower. Meanwhile, the flower has also been adapted to fit the bill of the hummingbird. One of the most striking examples of these birds is the violet sabrewing, which has a curved bill that fits the floral tube of its partner, the columnia flower, as accurately as a scimitar fits its streamlined scabbard. The precise match of bill and flower is important, since it deepens and strengthens the partnership, making it more likely that only the sabrewing will feed from the columnia, while the columnia’s stamens are positioned to dab pollen on exactly the right point of the bird’s forehead, so that it fertilises the next flower it visits. From this mutualistic symbiosis it is clear that selection is operating to a significant degree at the level of the partnership, stabilising and making permanent the living interaction.

If we turn our attentions to the behavioural symbioses of the cleaner stations, once again we see that these involve important changes in behaviour for both predators and cleaners: the predators put aside hunger and aggression, while the cleaner fish and tiny shrimps put aside fear and the instinct to flee. Such dramatic changes of behaviour in predator and potential prey would have to be hardwired into the genomes of the interacting partners and, just as we have seen with the hummingbirds and their floral partners, this involves each of the partners changing its behaviour in relation to the other. Once again we see selection operating at the level of the partnership in a mutualistic symbiosis. This also raises important questions about the real nature of viruses and their hosts. Could it be that selection might also be operating at the level of the virus-host interaction? If so, at what stage in the interaction did selection switch from operating at selfish, individual, even selfish gene, level, to recognise and begin to operate at this profoundly important level? This very question was addressed by the eminent evolutionary biologist, John Maynard Smith, late professor at the University of Sussex, and widely acclaimed as a pioneering Modern Darwinian.

In a chapter in the multi-authored book, Symbiosis as a Source of Evolutionary Innovation, which was edited by Lynn Margulis and René Fester, Maynard Smith developed a very interesting extrapolation of the Darwinian view of symbiosis. Believing that symbiosis played an important part in three of the five major transitions of life, he nevertheless insisted that there was no reason for symbiosis to challenge the neo-Darwinian view of evolution. But he also believed that, in order to accommodate the partnership aspects of symbiosis, there were circumstances in which natural selection must operate at a different level in symbiosis when compared with how it operates in the many Darwinian extrapolations.

It was even more helpful when, in exploring this further, he examined symbioses involving a microbial symbiont and a more complex host, and these he divided into various sub-categories. Where the symbiont could survive and reproduce independently of the host, this would suggest an evolution along conventional “selfish” Darwinian lines. But where the symbiont cannot survive without the host, and most particularly where the symbiont is dependent on the host for reproduction – a condition Maynard Smith termed “direct transmission” – the role of natural selection would inevitably change. Viruses can never survive, or reproduce, without their hosts. In this respect, viruses are said to be obligate parasites, so we should not be too surprised to discover that Maynard Smith included viruses in his discussion of symbionts that were only capable of reproduction through direct transmission.

In his words:

With direct transmission, the genes of the symbiont will leave descendants only to the extent that the host survives and reproduces. In general, therefore, mutations in the genes of the symbiont will be established by selection only if they increase the fitness of the host.9

When he writes that “mutations … will be established by selection”, he is referring to evolution taking place in the conventional Darwinian sense. Or to put it simply, the symbiont – the virus in virus-host interactions – will only be honed by mutation-plus-selection in a manner that increases the fitness of the host. In other words, the virus is now responding to the presence, and needs, of its symbiotic partner.

This interpretation of symbiosis, as seen from a Darwinian perspective, provides an important measure of common ground between the two disciplines. As we have seen in the examples of the hummingbirds and the cleaner stations, a symbiologist might adopt a slightly different perspective, regarding both host and parasite as symbionts, so that, rather than merely looking at the relationship from a single perspective, the symbiologist would examine how this might apply to the partnership. And all the evidence from what is now a weighty world of symbiology, with its study of a vast array of such partnerships, would imply that in microbe-host partnerships each of the partners responds to the presence of the other – or to put it from an evolutionary perspective, selection will be seen to operate, to a significant degree, at the level of the partnership. This perspective is seen to operate throughout all the levels of symbiosis, and, in the evolutionary sense, to symbiogenesis, whether at behavioural, metabolic or genetic level.

Within the genetic symbioses, there are examples of sudden and major change, where the genomes of radically different life forms unite to form a single novel, holobiontic, genome.10 In this very dramatic situation, which has the potential to give rise to very rapid evolutionary change, it is inevitable that selection will operate, to significant degree, at the level of the new holobiontic genome. It is perhaps not altogether surprising that some biologists see an irrevocable chasm in the evolutionary dynamics of this most powerful of genetic symbiosis and the gradualism that is assumed to be central to Darwinian evolution. But Maynard Smith does not agree. He goes on to emphasise that there is no contradiction between Darwin’s belief that complex adaptations arise by the natural selection of numerous intermediates, and the possibility that new evolutionary potentialities may arise suddenly if genetic material that has been programmed by selection in different ancestral lineages is brought together by symbiosis.

This is important not only in offering the potential of reconciling the dynamics of Darwinian and symbiotic evolution, but also in interpreting the role of symbiotic viruses in our human evolution.

Virolution

Подняться наверх