Читать книгу Новые законы робототехники. Апология человеческих знаний в эпоху искусственного интеллекта - Фрэнк Паскуале - Страница 5
1. Введение
Профессионализм и экспертные знания
ОглавлениеКто должен решать, что включается в такую ответственность? Мягкий и ровный переход потребует старых и в то же время новых форм профессионализма в нескольких ключевых областях. Понятие экспертных знаний обычно указывает на владение определенным корпусом информации, но его реальное применение требует намного большего[54]. Будущее трудовой занятости покажется довольно мрачным тем, кто путает профессиональные обязанности с простым знанием. Способность компьютеров хранить и обрабатывать информацию выросла по экспоненте, и постоянно накапливается все больше данных о том, что люди делают на рабочем месте[55]. Однако профессионализм включает в себя и нечто более сложное – постоянную необходимость решать конфликты ценностей и обязанностей, а также противоречивость описаний фактов[56]. И это имеет большое значение для будущего состояния рынка труда.
Представим, например, что вы едете домой со скоростью сорок пять миль в час по дороге с двумя полосами движения. Впереди, на расстоянии сотни ярдов, вы замечаете группу детей, которые идут домой после школы. Но именно в тот момент, когда вы вот-вот проедете мимо них, встречная фура виляет и выезжает со своей полосы, направляясь вам прямо в лоб. У вас лишь пара секунд, чтобы решить: пожертвовать собой или наехать на детей, чтобы уклониться от грузовика.
Мне хочется думать, что большинство выберет более благородный вариант. По мере развития автоматизации вождения подобные ценности самопожертвования могут быть закодированы непосредственно в транспортные средства[57]. Многие автомобили уже сегодня заметят малыша на дороге, которого может задавить водитель, если в поле его зрения есть слепое пятно. Они даже подают сигнал, когда есть риск столкновения с другими автомобилями. Технически возможно перейти от системы оповещения к остановке, которая будет закодирована на аппаратном уровне[58]. А если это возможно, следовательно, возможно и автоматическое торможение, не позволяющее водителю вильнуть в сторону ради самосохранения, которое будет во вред другим.
Но такое решение можно закодировать и иначе – поставить интересы пассажиров машины выше интересов всех остальных. И хотя я не думаю, что это правильный подход, его правильность для нас сейчас не важна. Главный вопрос в том, как инженеры, регуляторы, маркетологи, а также специалисты по связям с государственными органами и продажам должны работать вместе, определяя такие взаимодействия человека и компьютера, при которых соблюдались бы интересы всех, кого затрагивает автоматизация, но при этом учитывались коммерческие требования. В проектировании, маркетинге и безопасности не так много проблем, которые надо решить всего один раз. По мере развития технологий пользователи адаптируются, рынки меняются и постоянно возникают новые требования.
Медицина как профессия давно сталкивается с подобными дилеммами. Работа врачей никогда не ограничивается лечением болезней, с которыми они имеют дело непосредственно. Врачи, обязанные понимать и отслеживать постоянно меняющиеся риски и возможности, должны не упускать из виду направление развития медицины в целом, учитывая актуальные исследования, которые либо подтверждают, либо ставят под вопрос общепринятые медицинские знания. Рассмотрим такое, на первый взгляд тривиальное, решение – давать пациенту с синуситом антибиотик или нет? Хороший терапевт должен сначала решить, есть ли клинические показания для данного лекарства. Позиции врачей касательно того, насколько сильна их обязанность ограничивать предписания антибиотиков с целью замедления эволюции резистентных бактерий, могут несколько разниться. Они могут учитывать и значение возможных побочных эффектов антибиотиков, таких как весьма опасные инфекционные болезни, вызываемые в некоторых случаях бактерией Clostridium difficile, а также вероятность последствий для пациентов разных типов. Когда пациенты приходят к терапевту, у них есть некоторое представление о подобных вещах, однако они не несут ответственности за правильное решение, и точно так же они не обязаны объединять все субъективные суждения в конкретные рекомендации. Это задача профессионала.
С точки зрения адептов всемогущества больших данных, предсказательной аналитики, алгоритмов и ИИ, «мозги» роботов могут найти путь, чтобы обойти все эти проблемы. Это весьма привлекательное представление, которое обещает быстрое развитие технологии, сопровождаемое ростом уровня жизни. Но является ли оно реалистическим? Даже системы, работающие в чисто цифровой сфере, такие как поисковые алгоритмы, высокочастотный трейдинг и таргетированная реклама, во многих случаях оказывались предвзятыми, нечестными, неточными или неэффективными[59]. Гораздо сложнее собирать информацию в полевых условиях, да и вообще спорно то, что следует измерять в первую очередь. Ставки значительно выше, когда алгоритмические системы переходят на новый уровень, реализуясь в мозгах роботов, которые могут воспринимать свою среду и воздействовать на нее. Существенное значение в таком случае приобретает осмысленный человеческий контроль.
Подобный человеческий контроль необходим не только в таких областях, как медицина с ее историей профессионального самоуправления. Даже в сфере транспорта у профессионалов еще многие десятилетия будут сохраняться критически важные роли. Каким бы быстрым ни был прогресс в техниках роботизированного вождения, фирмы, его развивающие, не могут автоматизировать социальную апробацию дронов-доставщиков, переходных тележек или автомобилей. Как заметил эксперт по праву Брайант Смит, юристы, маркетологи, инженеры-строители и законодатели должны работать сообща, чтобы помочь обществу подготовится к широкому применению подобных технологий[60]. Государствам следует изменить политику обеспечения как в области транспорта, так и инфраструктуры. Локальные сообщества должны принять сложные решения о том, как управлять переходами, поскольку светофоры и дорожные знаки, оптимизированные для водителей-людей, возможно, не будут достаточно хорошо работать для роботизированных транспортных средств, и наоборот. Как отмечает Смит, «необходимо пересмотреть долгосрочные принципы планов землепользования, инфраструктурных проектов, строительных кодексов, ценных бумаг и бюджетов»[61].
Для этого перехода понадобится выполнить большую и многостороннюю работу[62]. Эксперты по безопасности будут моделировать то, создают ли транспортные средства без людей-пассажиров особые риски для критически важной инфраструктуры или для толп. Террористам не нужен самоубийца-подрывник, если можно начинить взрывчаткой беспилотный автомобиль. Эксперты по здравоохранению будут моделировать распространение инфекционных заболеваний в той ситуации, когда в транспортных средствах перевозятся незнакомые друг с другом люди. Законодатели уже мучаются с вопросом о том, следует ли обязать такие транспортные средства возвращать контроль человеку по его запросу или предоставлять контроль полиции, если она его требует[63]. Я использовал в последнем предложении двусмысленный термин «человек», поскольку у нас все еще нет хорошего термина для того, кто находится в полуавтоматическом транспортном средстве. И право, и нормы постепенно определят, что представляет собой подобная идентичность[64].
Ни одно из таких решений не должно приниматься исключительно – или даже в первую очередь – программистами и корпорациями, разрабатывающими алгоритмы беспилотных автомобилей. Для них требуется участие властей и значительно более широкого спектра экспертов, начиная со специалистов по урбанистке и заканчивая регулирующими ведомствами, полицией и адвокатами. Переговоры всех этих заинтересованных сторон, скорее всего, будут длительными, но такова цена демократического, инклюзивного перехода к новой и более качественной технологии. И это только немногие из этических, правовых и социальных составляющих масштабного перехода к беспилотным автомобилям[65].
Тем не менее некоторые футуристы утверждают, что ИИ обходит саму необходимость наличия профессий. По их мнению, если у нас есть достаточный массив данных для обучения, практически любую человеческую функцию можно заменить роботом. В этой книге мы исходим из прямо противоположного взгляда: в той мере, в какой наша повседневная жизнь оформляется ИИ и машинным обучением (которыми часто управляют далекие крупные корпорации), нам нужно больше профессионалов, причем профессионалов более квалифицированных. Это вопрос утверждения и расширения схем образования и лицензирования, которые у нас уже имеются в таких областях, как медицина и право. Также может потребоваться создание новых профессиональных идентичностей в других критически важных секторах, где существенную роль играет широкое участие общества и в то же время экспертные знания.
54
Как показывает Джил Эйал, экспертные знания вполне могут существовать вне эксперта, не только в виде набора пропозиционально выраженных знаний, но и в качестве институтов. См.: Gil Eyal, The Crisis of Expertise (Medford, MA: Polity Press, 2019).
55
Alex (Sandy) Pentland, Honest Signals: How They Shape Our World (Cambridge, MA: MIT Press, 2008), где обсуждаются социометрические индикаторы.
56
См.: Andrew Abbott, The System of Professions: An Essay on the Division of Expert Labor (Chicago: University of Chicago Press, 2014); Eliot Freidson, Professionalism, The Third Logic: On the Practice of Knowledge (Chicago: University of Chicago Press, 2001).
57
Подробное обсуждение «автоматизации добродетели» см. в: Ian Kerr, “Digital Locks and the Automation of Virtue,” in From Radical Extremism to Balanced Copyright: Canadian Copyright and the Digital Agenda, ed. Michael Geist (Toronto: Irwin Law, 2010), 247–303.
58
Hope Reese, “Updated: Autonomous Driving Levels о to 5: Understanding the Differences,” TechRepublic, January 20, 2016, http:// www.techrepublic.com/article/autonomous-driving-levels-o-to-5-understanding-the-differences/.
59
Кэти О’Нил, Убийственные большие данные: как математика превратилась в оружие массового поражения (Москва: ACT, 2018); Frank Pasquale, The Black Box Society: The Secret Algorithms That Control Money and Information (Cambridge, MA: Harvard University Press, 2015); Da-nah Boyd and Kate Crawford, “Critical Questions for Big Data: Provocations for a Cultural, Technological, and Scholarly Phenomenon.” Information, Communication, and Society 15, no. 5 (2012): 662–679.
60
Bryant Walker Smith, “How Governments Can Promote Automated Driving,” New Mexico Law Review 47 (2017): 99-138.
61
Ibid., 114.
62
Я привожу здесь лишь очевидные примеры. Подробное описание будущей работы, сосредоточенное в основном на приспособлении к новой технологии, см. в: Thomas Frey, “55 Jobs of the Future,” Futurist Speaker, November 11, 2011, http://www.futu-ristspeaker.com/business-trends/55-jobs-of-the-future/.
63
US Department of Transportation, Federal Automated Vehicles Policy: Accelerating the Next Revolution in Roadway Safety (September 2016), 9, https://www.transportation.gov/AV/federal-automated-vehicles-policy-september-2016.
64
Критическую роль будут играть правила, определяющие ответственность. См.: Marc Canellas and Rachel Haga, “Unsafe at Any Level: The U. S. NHTSA’s Levels of Automation Are a Liability for Automated Vehicles,” Communications of the ACM 63, no. 3 (2020): 31–34.
65
Чисто технологические проблемы тоже не так-то просто решить. См.: Roberto Baldwin, “Self-Driving Cars are Taking Longer to Build Than Everyone Thought,” Car and Driver, May 10, 2020, https://www.caranddriver.com/features/a32266303/self-driving-cars-are-taking-longer-to-build-than-everyone-thought/.