Читать книгу The Subterranean World - G. Hartwig - Страница 6
CHAPTER III.
SUBTERRANEAN HEAT.
ОглавлениеZone of invariable Temperature—Increasing Temperature of the Earth at a greater Depth—Proofs found in Mines and Artesian Wells, in Hot Springs and Volcanic Eruptions—The whole Earth probably at one time a fluid mass.
Born neither to soar into the air, nor to inhabit the deep waters, nor to pass his life in subterranean darkness, man is unable to depart to any considerable distance from the earth’s surface. If he ascends in a balloon, he soon reaches the limits where the rarefied atmosphere renders breathing impossible; a few thousand feet limit his efforts to pierce the earth’s crust; and should he be cast out into the sea, he is soon drowned. But beyond the limits to which his body is confined, his mind soars into space, and plunging into the unknown interior of our globe, seeks to unravel the mystery of its formation. In the following pages I purpose briefly to point out the circumstances which guide him in his speculations, and enable him to roam, at least in spirit, through the profound abysses of the subterranean world.
As we all know, the temperature of the atmosphere soon communicates its changes to the surface of the earth; and our meadows, which when warmed by the rays of the sun are green and covered with flowers, harden in winter into a lifeless plain. But the influence of the sun’s heat upon the soil is merely superficial, so that in the temperate zones the annual fluctuations of the thermometer are no longer perceptible at a depth of from 60 to 80 feet.
Thus, in the cellars of the Parisian observatory, a thermometer, placed many years ago 86 feet below the surface, invariably indicates +11°7 Celsius; the summer above may be ever so intensely hot, or the winter ever so cold, the column of mercury never deviates a hair’s breadth from the height it has once attained. Below these limits the warmth of the earth gradually increases—a fact placed beyond all doubt by the innumerable observations that have been made in mines, and during the boring of Artesian wells. For wherever sinkings have been made, a rising of the thermometer has always been found to take place as the auger penetrates to a greater depth below the surface. Thus, to cite but a few examples, the temperature of the Artesian well of Grenelle in Paris, which, at a depth of 917 French feet, amounted to +22°2 C., increased at the depth of 1,555 feet to +26°43, and the water, which now gashes forth from the depth of 1,684 feet, constantly maintains the same lukewarm temperature of +27°70.
During the boring of the well of Neusalzwerk, in Westphalia, the temperature rose at the various depths of 580, 1,285, and 1,935 feet from +19°7 C. to +27°5 and +31°4, until, finally, when the depth of 2,144 feet was attained, the saline spring issued forth with a constant temperature of +33°6. As from the experience acquired in mines and Artesian wells, the temperature is found to increase by one degree for about every successive 80 or 100 feet, the internal warmth of the earth, supposing it to increase in the same proportion towards the centre, would, at the depth of 10,000 feet, be equal to that of boiling water, and at that of 80 or 100 miles sufficiently great to melt the hardest rock.
Whether this steady increase really takes place is of course only matter of conjecture; but the history of hot springs and volcanic eruptions shows us that everywhere a very high degree of heat exists at considerable depths below the surface.
Most springs in the temperate zone, without being warm in a remarkable degree, still possess a higher temperature than the average warmth of the air in the locality where they gush forth, while in the tropical zone they are frequently cooler—a proof that in both cases they issue from a depth independent of the fluctuating atmospherical influences of the surface. While these cool or cold springs, spread in immense numbers over the earth, attest the existence everywhere of a subterranean source of heat, the warm and hot springs remind us of its intensity at more considerable depths. These thermal sources are confined to no climate, for in the cold land of the Tschuktschi, where the soil must be perpetually frozen to a depth of several hundred feet, boiling water is found to gush forth, as well as in the tropical Feejee Islands.
The hot springs, though of frequent occurrence in all parts of the world, are not the only or principal vents of subterranean heat. Far greater quantities of caloric are constantly pouring forth from the numerous volcanoes and solfataras, which are likewise distributed all over the surface of the globe. The violent convulsions which attend every outflow of lava are proofs that these torrents of liquid stone must have been forced upwards from a far greater depth than the water of the hot springs. The temperature necessary for their production likewise points to this fact, for to melt stones a heat of at least 2,000°C. is required. But volcanoes, like hot springs, are found in every zone; beyond the Arctic Circle, as well as in the most southern land attained by Sir James Ross in his memorable voyage. They line the coasts of the Pacific, as well as those of the Sea of Kamtschatka. They desolate Iceland, as they devoured Pompeii and Herculaneum; and everywhere they pour forth the same masses of fluid stone; so that the geologist is not able to distinguish the lavas of the Andes chain from those of Etna or Vesuvius. But phenomena so much alike in character, common to all parts of the globe, can hardly be dependent upon mere local circumstances, and speak loudly in favour of the theory which supposes our earth to have been at one time a ball of liquid fire. Wandering through space during a course of unnumbered ages, this huge mass of molten stones and metals gradually cooled, and at length got covered with a solid crust, below which the ancient furnaces are still burning, and striving to burst their fetters. Well may we say with Horace—
‘Incedimus per ignes
Suppositos cineri doloso.’