Читать книгу An Introduction to Text Mining - Gabe Ignatow - Страница 15

Conversation Analysis

Оглавление

Conversation analysts study everyday conversations in terms of how people negotiate the meaning of the conversation in which they are participating and the larger discourse of which the conversation is a part. Conversation analysts focus not only on what is said in daily conversations but also on how people use language pragmatically to define the situations in which they find themselves. These processes go mostly unnoticed until there is disagreement as to the meaning of a particular situation. An example of conversation analysis is the educational researcher Evison’s (2013) study of “academic talk,” which used corpus linguistic techniques (see Appendix F) on both a corpus of 250,000 words of spoken academic discourse and a benchmark corpus of casual conversation to explore conversational turn openings. The corpus of academic discourse included 13,337 turns taken by tutors and students in a range of social interactions. In seeking to better understand the unique language of academia and of specific academic disciplines, Evison identified six items that have a particularly strong affinity with the turn-opening position (mhm, mm, yes, laughter, oh, no) as key characteristics of academic talk.

Further examples of conversation analysis research include studies of conversation in educational settings by O’Keefe and Walsh (2012); in health care settings by Heath and Luff (2000), Heritage and Raymond (2005), and Silverman (2016); and in online environments among Wikipedia editors by Danescu-Niculescu-Mizil, Lee, Pang, and Kleinberg (2012). O’Keefe and Walsh’s 2012 study combined corpus linguistics and conversation analysis methodologies to analyze higher education small-group teaching sessions. Their data are from a 1-million-word corpus, the Limerick–Belfast Corpus of Academic Spoken English (LIBEL CASE). Danescu-Niculescu-Mizil and colleagues (2012) analyzed signals manifested in language in order to learn about roles, status, and other aspects of groups’ interactional dynamics. In their study of Wikipedians and of arguments before the U.S. Supreme Court, they showed that in group discussions, power differentials between participants are subtly revealed by the degree to which one individual immediately echoes the linguistic style of the person to whom they are responding. They proposed an analysis framework based on linguistic coordination that can be used to shed light on power relationships and that works consistently across multiple types of power, including more static forms of power based on status differences and more situational forms in which one individual experiences a type of dependence on another.

Hakimnia and her colleagues’ (2015) conversation analysis of transcripts of calls to a telenursing site in Sweden used a comparative research design (see Chapter 5). The study’s goal was to analyze callers’ reasons for calling and the outcome of the calls in terms of whether men and women received different kinds of referrals. The researchers chose to randomly sample 800 calls from a corpus of over 5,000 total calls that had been recorded at a telenursing site in Sweden over a period of 11 months. Callers were informed about the study in a prerecorded message and consented to participate, while the nurses were informed verbally about the study. The first step in the analysis of the final sample of 800 calls was to create a matrix (see Chapter 5 and Appendices C and D), including information on each caller’s gender, age, fluency or nonfluency in Swedish as well as the outcome of the call (whether callers were referred to a general practitioner). The researchers found that men, and especially fathers, received more referrals to general practitioners than did women. The most common caller was a woman fluent in Swedish (64%), and the least likely caller was a man nonfluent in Swedish (3%). All in all, 70% of the callers were women. When the calls concerned children, 78% of the callers were female. Based on these results, the researchers concluded that it is important that telenursing not become a “feminine” activity, only suitable for young callers fluent in Swedish. Given the telenurses’ gatekeeping role, there is a risk that differences on this first level of health care could be reproduced throughout the whole health care system.

An Introduction to Text Mining

Подняться наверх