Читать книгу Schöpfungen der Ingenieurtechnik der Neuzeit - Geitel Max - Страница 3

I. Eiserne Brücken- und Hochbauten

Оглавление

Die gewaltige Entwicklung, die der Brückenbau in den letzten Jahrzehnten genommen hat, und die uns in der Überbrückung immer größerer Spannweiten entgegentritt, hat zweierlei Quellen, die beide aus der wissenschaftlichen Vertiefung entspringen, die die Technik im allgemeinen und die Ingenieurtechnik im besonderen genommen hat. Zunächst ist hier die Vervollkommnung der verschiedenen auf die Darstellung von Eisen und Stahl abzielenden Arbeitsverfahren zu nennen. Sodann war es die Ausgestaltung und Anwendung der Mathematik und Mechanik durch Ritter, Culmann, Schwedler, Müller-Breslau u. a. m., die in der sog. graphischen Statik dem Ingenieur das Mittel in die Hand gab, um die in den einzelnen Teilen der Bauwerke auftretende Inanspruchnahme nicht nur rechnerisch, sondern auch zeichnerisch festzulegen und die einzelnen Bauteile mit dem Aufwand geringsten Materials und doch vollkommen sicher auszuführen.

Im Jahre 1778 wurde die erste noch heute in Benutzung befindliche eiserne Brücke bei Iron-Bridge in England erbaut. Sie hat eine Spannweite von 33 m. Im Laufe der Jahrzehnte erhöhten sich die Spannweiten allmählich mit der Vervollkommnung der Eisendarstellung und des wissenschaftlichen Rüstzeuges zu früher nicht geahnten Ausmaßen. Nachstehend bringen wir eine kleine Auslese aus den größten eisernen Brücken der Erde.


Besonders große Spannweiten weisen die neuzeitlichen Hängebrücken auf. Wir nennen hier:


Aus der Zahl der großen Brückenbauten eine geeignete Auswahl zu treffen, ist eine schwierige Aufgabe. Immerhin ist bezüglich der nachstehend beschriebenen fünf großen Brückenbauten festzustellen, daß jede derselben eine eigenartige Stellung einnimmt: die Forthbrücke fordert unsre Bewunderung durch ihre gewaltigen Abmessungen heraus; bei der Zambesibrücke waren erhebliche örtliche Schwierigkeiten zu überwinden; der Bau der Hohenzollernbrücke bei Köln mußte sich unter überaus schwierigen Verhältnissen vollziehen, da es sich hier um den Ersatz einer einen außerordentlich regen Eisenbahnverkehr vermittelnden Riesenbrücke handelte; die Hoanghobrücke fesselt uns durch ihre riesenhaften Abmessungen und die aus der entlegenen Lage des Bauplatzes sich ergebenden Schwierigkeiten; der Bau der St. Lorenzbrücke wurde zweimal durch schwere Unfälle unterbrochen, die die Fertigstellung um Jahre verzögerten.

Die Tatsache, daß der Bau der Forthbrücke überhaupt beabsichtigt und ausgeführt wurde, bildet einen Beleg für die Richtigkeit des Spruches: »Zeit ist Geld«, denn die durch den Bau der Brücke und der erforderlichen Nebenanlagen verschlungene Summe beläuft sich auf insgesamt 67 400 000 Mk., während die erreichte Entfernungsverminderung nur den sehr geringen Betrag von 40 km ausmacht, also eine Strecke, für deren Bewältigung das Dampfroß noch nicht den Aufwand einer halben Stunde gebraucht. Ein von Bouch, dem Erbauer der am 28. Dezember 1879 mit einem vollbesetzten Personenzuge durch einen Sturm in die Tiefe gerissenen Tay-Brücke, herrührender Plan war abgelehnt worden. An Stelle desselben entschied man sich für einen von den Ingenieuren John Fowler und Benjamin Baker aufgestellten Entwurf. Dieser sah eine Brücke nach dem von dem Deutsch-Amerikaner Gerber bereits bei der Niagarabrücke mit Erfolg angewandten Kantilever-, Ausleger-, Krag– oder Konsol-System vor. Das Kennzeichen dieser Bauweise besteht darin, daß die Brücke ohne Anwendung eines dieselbe stützenden Baugerüstes von beiden Ufern aus konsolartig vorgebaut wird, bis sie in der Mitte, hoch über den Fluten zum Schluß gebracht wird.

Die einer Gesamtansicht dargestellte Brücke überspannt mit zwei Öffnungen von je 521,20 m lichter Weite den Firth of Forth. Um den den Meeresarm befahrenden Schiffen den Durchgang zu gestatten, liegen die Eisenbahnschienen in einer Höhe von 47,7 m über dem Wasserspiegel. Die die Konsolen oder Ausleger nach beiden Seiten hin entsendenden Mittelpfeiler sind 107 m hoch. Die Gesamtlänge der Brücke beträgt 2466,1 m. Die Anwendung der Kantilever- oder Konsol-Bauart erschien im vorliegenden Falle um deswillen geboten, weil die Tiefe des Meeresarmes an der zu überbrückenden Stelle 60 m beträgt, und daher die Aufstellung eines Baugerüstes der Brücke unmöglich war. Demnach begann man den Bau zunächst mit der Errichtung der beiden großen, aus je 4 Eckpfeilern bestehenden Mittelpfeiler, von denen aus dann die gewaltigen eigentlichen Träger, die Konsolen oder Ausleger, nach beiden Seiten hin vorgebaut wurden. Diese zielbewußt und ohne erheblichen Unfall ausgeführte Leistung ist in höchstem Maße bewunderungswürdig, wenn man sie mit dem Bau des Eiffelturmes vergleicht, denn jeder von den Mittelpfeilern ausladende Brückenarm entspricht einem Eiffelturm. Ist schon der senkrechte Aufbau des letzteren als eine Ingenieurleistung ersten Ranges zu bezeichnen, um wieviel mehr muß dies von dem wagerecht in schwindelnder Höhe erfolgten gerüstlosen Vortrieb dieses Riesenturmes gelten. Zwischen den Endpunkten der von den Mittelpfeilern nach beiden Seiten hin ausladenden Konsolen wird der noch zu überbrückende Teil der Spannweite durch einen mit Hilfe von Gelenken eingeschalteten Fachwerksträger überspannt. Diese Bauart wird als Kantilever- oder Konsolbrücke mit freischwebenden Stützpunkten benannt und findet dort Anwendung, wo aus irgendwelchen Gründen die Errichtung eines Baugerüstes zwischen den Stützpunkten nicht möglich, und die Spannweite besonders groß ist. zeigt ein lebendes Modell der Forthbrücke: Die beiden auf Stühlen sitzenden Personen entsprechen den beiden Hauptpfeilern, während der mittlere, gelenkige Teil der Brücke durch den von der mittleren Person eingenommenen Sitz dargestellt wird. Die Arme der beiden ersteren Personen sind als Konsolen ausgebildet. Die über dem Wasser liegenden Konsolen tragen das gelenkige Zwischenstück, während die dem Lande zugekehrten Konsolen hier durch Fundamente gesichert sind.

Für jeden der 4 Eckpfeiler eines jeden Hauptpfeilers wurde ein Mauerkörper von 15 m Durchmesser errichtet; die Verankerung der Eckpfeiler auf diesen Mauerkörpern erfolgte durch 48 Stahlbolzen von 65 mm Stärke. Der südliche Pfeiler ist auf eisernen Sinkkästen, Caissons, ausgebaut, die unter Anwendung von Druckluft durch die hier vorhandene starke Schlammschicht bis auf den festen Baugrund hinabgesenkt wurden. Ein solcher Sinkkasten hatte einen Durchmesser von 21,3 m. Drei derselben wurden ohne Unfall an den Ort ihrer Bestimmung gebracht. Bei der Verlegung des vierten Kastens aber ereignete sich am Neujahrstage 1885 ein schwerer, den Bau stark verzögernder Unfall. An diesem Tage ruhte die Arbeit. Der Kasten, der glücklich bis an die Stelle gebracht war, wo er versenkt werden sollte, setzte sich so tief im Schlamm fest, daß die Flut ihn nicht zu heben vermochte. Er füllte sich mit Wasser, neigte sich zur Seite und wurde außerdem noch 4½ m von der ihm bestimmten Stelle abgetrieben. Endlich, im Oktober, wurde der Caisson an seinen richtigen Ort gebracht. Auch die beiden südlichen Eckpfeiler des Mittelpfeilers ruhen auf Sinkkästen. Die Lage des nördlichen Pfeilers ermöglichte es, daß dessen Fundamente durchgehends unter Anwendung von Fangdämmen ausgeführt werden konnten. Die Pfeiler und die Konsolen sind aus röhrenförmigen Säulen und Streben zusammengefügt. Der Durchmesser dieser Röhren beträgt bis zu 3,66 m. Überaus schwierig gestaltete sich die Ausführung der Knotenpunkte, das sind die Verbindungen zwischen den einzelnen Röhren und Streben. Die Brücke weist Stellen auf, wo zehn verschiedene Teile von ungewöhnlichen Abmessungen und Formen zusammenstoßen und miteinander verbunden werden mußten. Um diese Verbindungen zu erleichtern, ließ man den kreisförmigen Querschnitt der Röhren in der Nähe der Knotenpunkte in eine viereckige Form übergehen. Das Hinausbauen der Konsolen geschah in der Weise, daß durch hydraulische Nietmaschinen die einzelnen Rohrteile und Bleche voreinandergebracht wurden. Hierbei war dafür Sorge zu tragen, daß die beiden nach verschiedenen entgegengesetzten Richtungen ausladenden Konsolen gleichmäßig vorgetrieben wurden, damit der Hauptpfeiler nicht einseitig belastet und zum Kippen gebracht wurde. Beide Konsolen mußten sich also während des gesamten Bauvorganges das Gleichgewicht halten. Die mit Hilfe der Nietmaschinen voreinander gebrachten Teile mußten, bevor sie mit den bereits fertiggestellten Teilen in feste Verbindung gebracht werden konnten, durch Hilfskonstruktionen abgestützt werden. Der dem Fortgang des Vortriebes der Konsolen entsprechende Vorschub der Nietmaschinen geschah auf hydraulischem Wege. Besondere Sorgfalt erforderte auch die Innehaltung der Richtung bei dem Vorbau der Konsolen. Das zwischen diesen liegende bewegliche Schlußglied wurde zunächst in fester Verbindung mit jenen ausgeführt und erst nach erfolgter Fertigstellung an seinen beiden Enden auf Rollen gelegt. Die gewaltigen Abmessungen der Brücke spiegeln sich u. a. in dem Einfluß wider, den die Erhöhung der Luftwärme auf das Baumaterial ausübt. Die aus dem Temperaturunterschied entspringenden Längsverschiebungen betragen fast 1 m; bescheint die Sonne die Brücke einseitig, so hat dies eine Bewegung von 0,2 m senkrecht zur Brückenachse zur Folge.

Am 4. März 1890 wurde die Brücke ihrer Bestimmung übergeben.

Die im Zuge der Kap-Kairo-Eisenbahn den Zambesifluß unterhalb der Viktoriafälle überspannende Brücke ist in ihrem Hauptteile ebenfalls nach dem Kantilever- oder Auslegersystem erbaut. Dieser den reißenden Strom übersetzende Hauptteil ist gleich der Forthbrücke ohne Gerüst von beiden Ufern aus vorgebaut und hat eine lichte Weite von 152,4 m; die Pfeilhöhe des Bogens der Eisenkonstruktion beträgt 27,4 m. Die Brücke liegt fast unmittelbar unterhalb der Fälle, die bei über 1600 m Breite die Fluten des Zambesi in eine Tiefe von 140 m hinabstürzen lassen. Die Gesamtlänge der Brücke beträgt 198 m, also ein keineswegs ungewöhnliches Maß. Was aber den Bau, insbesondere dessen Vorarbeiten überaus schwierig gestaltete, das waren außergewöhnliche örtliche Verhältnisse. Diese ergaben sich aus der großen Höhe der steil aus den Wirbeln des Stromes emporragenden Felsufer und hatten zur Folge, daß die Brücke von beiden Ufern aus in der schwindelnden Höhe von 115 m über dem Wasserspiegel vorgebaut werden mußte. Um das Maß der Entfernung der beiden Ufer festzustellen, wurde eine Rakete, an der ein dünnes Seil befestigt war, über den Fluß geschleudert und mit Hilfe dieses Seiles ein Telephondraht über den Fluß gespannt, und außerdem ein Stahldraht zum Messen der Entfernung gezogen. Der Telephondraht war erforderlich, weil, um von einem zum andern Ufer zu gelangen, ein Umweg von 16 km zurückzulegen war. Der den Bau leitende Ingenieur C. Beresford Fox begnügte sich aber nicht mit der telephonischen Verständigung, sondern ließ an einem über den Fluß gespannten Drahtseil ein Sitzbrett anbringen, auf dem er sich mittels eines endlosen Seiles in schwindelnder Höhe von der einen zu der andern Baustelle ziehen ließ. Um die während des Baues etwa abstürzenden Arbeiter vor dem sichern Tode des Ertrinkens zu bewahren, wurde ein Schutznetz über den Strom ausgespannt.

Die am 5. Oktober 1859 nach 4½jähriger Bauzeit eröffnete, von der Köln-Mindener Eisenbahngesellschaft mit einem Aufwand von 3 927 434 Talern gleich rund 11 780 000 Mk. erbaute Kölner Rheinbrücke (eine Gitterbrücke mit 4 Öffnungen) genügte bereits seit geraumer Zeit nicht mehr den erhöhten Anforderungen, die der zunehmende Verkehr an sie stellte. Dieser war von 8–10 täglich die Brücke befahrenden planmäßigen Zügen auf 380 gestiegen. Am 19. Juni 1907 wurde mit dem Bau der an die Stelle dieser alten Rheinbrücke tretenden Hohenzollernbrücke, begonnen. Diese hat nur 3 Öffnungen, deren mittlere 159,92 m und deren beiden seitlichen Öffnungen je 116 m Lichtweite besitzen. Der Bau dieser neuen Brücke, einer Bogenbrücke mit angehängter Fahrbahn, gestaltete sich um deswillen schwierig, weil während der Bauzeit der Straßenverkehr und der Eisenbahnbetrieb aufrecht zu erhalten waren, und außerdem schiffahrtspolizeiliche Erschwernisse zu überwinden waren.

Der Entwurf des ingenieurbautechnischen Teiles wurde im Ministerium der öffentlichen Arbeiten zu Berlin, nachdem er in der Eisenbahndirektion Köln aufgestellt war, geprüft und festgestellt. Die Berechnung und bauliche Durchbildung der eisernen Überbauten wurde der Aktiengesellschaft Harkort zu Duisburg und der Maschinenbauanstalt Nürnberg, Zweiganstalt Gustavsburg, übertragen. Die obere Leitung lag bei der Eisenbahndirektion Köln. Von besonderer Eigenart sind die die Beseitigung der alten Brücke bezweckenden Arbeiten. Hätte man diese in der üblichen Weise abgebrochen, indem man Holzjoche zu deren Unterfangung in den Strom einrammte und über diesen den Überbau stückweise entfernte, so würde man 2–3 Monate an der Bauzeit verloren haben. Infolgedessen entschloß man sich, die Brücke mit Hilfe des Wasserstoff-Sauerstoff-Verfahrens zu zerschneiden, und die so gewonnenen Einzelteile mittels schwimmender Gerüste zu entfernen und ans Ufer zu setzen. Das Eisenwerk der alten Brücke bestand aus zwei durchlaufenden, auf dem mittelsten der drei Strompfeiler unterbrochenen Gitterträgern von 8,5 m Höhe. Jeder der Träger hatte nach Beseitigung der Fahrbahn ein Gewicht von rund 840 t. Da jede der vier Öffnungen getrennt entfernt werden mußte, wurden zunächst die Träger auf den Zwischenpfeilern durchschnitten. Nunmehr wurde ein entsprechend angeordnetes Gerüst, das auf rechteckigen Kähnen von entsprechender Tragkraft stand, durch Schleppdampfer unter den auszufahrenden Träger gebracht und dort verankert. Die Kähne waren mit Wasserballast gefüllt. Wurde dieser durch Pumpen aus den Kähnen hinausgeschafft, so hoben sich jene und lüfteten hierbei den auf dem Gerüst ruhenden Träger von seinen Stützpunkten nach oben. Sobald der Träger frei schwebte, wurden die Anker gelichtet, und das Schwimmgerüst mit dem auf ihm liegenden Träger durch Schleppdampfer in ein seitlich gelegenes Abbruchgerüst übergeführt. Die Beseitigung der mittleren Öffnungen vollzog sich in der kurzen Zeit von 40 Minuten. Die Beseitigung der rechtsseitigen Öffnung dauerte eine Stunde, die der linksseitigen Öffnung 2½ Stunden. Bei dem Bau der neuen Brücke sind rund 11 500 cbm Werksteine und 46 500 cbm Beton verbaut, 8600 cbm Ziegelsteinmauerwerk, 610 t Profileisen für die Gründungsarbeiten und 160 t sonstiges im Mauerwerk vermauertes Eisen mit einem Kostenaufwand von 3 530 000 Mk. Das Gesamtgewicht des eisernen Überbaues betrug 16 560 t bei einem Kostenaufwand von 4 290 000 Mk. Die Gesamtkosten betrugen, ausschließlich der an den Portalen aufgestellten Reiterstandbilder und der Verwaltungskosten, rund 13 300 000 Mk.

Die den Hoangho im Zuge der Tientsin-Pukow-Bahn überbrückende in dargestellte gewaltige Brücke ist von der Maschinenfabrik Augsburg-Nürnberg, Werk Gustavsburg, erbaut und im November 1912 eröffnet worden. Der Hoangho oder »gelbe Fluß« bildet seiner tückischen Eigenschaften wegen von jeher den »gelben Kummer« Chinas. Im Laufe der Jahrhunderte hat er unter Vernichtung von Tausenden von Menschenleben die ihn umgebenden Deiche durchbrochen und seine Mündung verlegt. Dieses geschah insgesamt neunmal, zuletzt im Jahre 1851, wo sich die Mündung, die bisher südlich der Schantunghalbinsel lag, nach ihrem jetzigen Orte verlegte. Dort, wo die Brücke den Fluß 200 km oberhalb der Mündung überschreitet, hat dieser eine Breite von etwa 500 m. Die Breite des hier zu überbrückenden Überschwemmungsgebiets beläuft sich jedoch auf etwa 1300 m, woraus sich die ungewöhnliche Länge des Bauwerks erklärt. Diese beträgt einschließlich der Pfeiler 1255,20 m. Hiervon entfallen 834 m auf die Flutbrücken, während der Rest von 421,20 m auf den Hauptstrom entfällt. Die Überbrückung der 834 m weiten Flutöffnungen erfolgt durch 9 selbständige Parallelträger von je 91,50 m Spannweite. Der Hauptstrom wird dagegen durch ein großartiges zusammenhängendes Bauwerk überspannt. Die Hauptbrücke wird durch zwei nebeneinander im Abstand von 9,40 m liegende Fachwerkträger von 421 m Länge gebildet, eingeteilt in zwei Seitenöffnungen von je 128 m und eine Mittelöffnung von 164 m. Bei dem Bau der Brücke handelte es sich darum, diese zunächst eingleisig auszuführen, jedoch derart, daß sie jederzeit mit geringsten Kosten in eine zweigleisige umgebaut werden kann. Demnach ist der Abstand der Hauptträger von Haus aus für einen zweigleisigen Betrieb gewählt. Dagegen sind die Abmessungen der Hauptträger nur so gewählt, daß sie für einen eingleisigen Betrieb genügen; sie müssen also bei dem Übergange zu zweigleisigem Betrieb verstärkt werden. Dies soll in der Weise geschehen, daß neben jedem Hauptträger ein weiterer Hauptträger aufgestellt und an jeder senkrechten Strebe mit dem bestehenden Hauptträger durch ein vom Ober- bis zum Untergurt durchlaufendes Blech verbunden wird. Diese Art der Verstärkung hat den Vorteil, daß in die zunächst ausgeführten Brückenteile kein überflüssiger Baustoff hineingebaut wird, und daß später lediglich eine Aufstellung der hinzukommenden Hauptträger, nicht aber eine Abänderung der vorhandenen Träger erforderlich ist. Die einzige zu erfüllende Aufgabe besteht darin, den neu hinzukommenden Hauptträger mit dem bereits vorhandenen Hauptträger zu einem einheitlichen Ganzen zu vereinigen. Erhebliche Schwierigkeiten boten die Fundierungsarbeiten, da der Untergrund selbst in 50 m Tiefe noch keinen tragfähigen Boden ergab. Infolgedessen mußte man sich dazu entschließen, Sinkkästen unter Luftdruck zu versenken und von diesen aus Rammpfähle zu schlagen. Jeder der Mittelstrompfeiler steht auf etwa 250 solcher Pfähle.

Die den Bau leitenden deutschen Ingenieure Borkowetz und Preis und der Bauchef der Eisenbahn, Baurat Dorpmüller, hatten nicht nur mit den Elementen, mit Hochwasser und Eis, sondern mit dem offenen und versteckten Widerstand der Chinesen zu kämpfen. – Das Eisengewicht der Strombrücke beträgt gegen 3700 t, das Gesamtgewicht des Überbaus 4100 t, jeder Strompfeiler hat eine Last von 1600 t zu tragen.

Der Bau der bei Quebec den Lorenzstrom überschreitenden Brücke wurde durch ein im Jahre 1887 erlassenes Gesetz genehmigt. Die Brücke sollte eine Mittelöffnung von rund 549 m Spannweite besitzen, die von je zwei 171,56 m langen Konsolen und einem 205,88 m langen eingehängten Mittelträger überspannt wurde. Die Gesamtlänge der Brücke sollte 988,2 m betragen; außer zwei Vollspurgleisen und zwei Straßenbahngleisen waren zwei Fahrstraßen mit äußeren Fußwegen vorgesehen. Am 29. August 1907 brach die Brücke während des Baues zusammen. Der neue Entwurf setzte die Länge der Konsolen auf 176,9 m, die des eingehängten Mittelträgers auf 195,2 m fest, so daß die Mittelöffnung wieder die Spannweite von 549 m erhielt. Die Gesamtlänge der Brücke blieb unverändert. Am 11. September 1916 stürzte der Mittelträger, als er mittels hydraulischer Pressen und Schraubenwinden emporgewunden und mit den Konsolen verbunden werden sollte, in die Tiefe. Nun wurde ein neuer Mittelträger erbaut und am 24. September 1917 in die Brücke eingefügt. Die mit der St. Lawrence Bridge Company in Montreal getroffene Abmachung schloß mit dem Betrage von 1 750 000 Pfund Sterling ab.

Die großen Fortschritte, die sich in der Darstellung des Eisens vollzogen, und die durch die wissenschaftliche Vertiefung der Technik geschaffene Möglichkeit, die Beanspruchung der einzelnen Bauteile zu verfolgen, hatten alsbald zur Folge, daß sich das Eisen auch als Baustoff für Riesenhochbauten erfolgreich einführte. Die höchsten aus Stein aufgeführten Bauwerke, das Washington-Denkmal (172 m), die Türme des Kölner Doms (159 m) u. a. m. geben etwa die oberste Grenze an, bis zu welcher man sich der Gesteine als Baustoff bedienen darf. Darüber hinaus werden die unteren Mauerschichten durch das Gewicht der höheren Schichten derart auf Druck beansprucht, daß sie zerbröckeln. Eine derartige Gefahr liegt bei dem Eisen in weiter Ferne. Handelt es sich um die Aufführung solcher Bauten, deren Wandungen nicht geschlossen zu sein brauchen, dann hat das leichte und zierliche Maschengefüge der Eisenbauten im Gegensatz zu den vollen Steinwänden noch den Vorzug, daß es dem Winde eine erheblich geringere Angriffsfläche darbietet.

Als erster in Eisen errichteter Riesenhochbau ist der 300 m hohe Eiffelturm zu nennen, der eins der hervorragendsten Schaustücke der Pariser Weltausstellung 1889 bildete und bis heute den Ruhm in Anspruch nehmen kann, das höchste Bauwerk der Erde zu sein. Ursprünglich lediglich dazu bestimmt, ein glänzendes Ausstellungsstück zu bilden, hat der Eiffelturm sich immer mehr und mehr in den Dienst der Wissenschaft und des Verkehrs gestellt, indem er ein Laboratorium zur Untersuchung des Luftwiderstandes, eine meteorologische Station und eine Großstation für drahtlose Telegraphie trägt, die während des Weltkrieges sich für unsere Feinde als überaus wertvoll erwiesen hat.

Der Eiffelturm wird durch die beiden 260 m hohen Riesentürme der Telefunken-Groß-Station Nauen an Höhe fast erreicht, an Kühnheit des Aufbaues aber bei weitem übertroffen. Erbauer ist der Oberingenieur Bräckerbohm der Hein, Lehmann & Co., A. – G. zu Berlin. Bereits im Jahre 1909 erhielt diese von der Gesellschaft für drahtlose Telegraphie (Telefunken) den Auftrag zum Bau eines 100 m hohen als Antennenträger dienenden turmähnlichen, unten isolierten Mastes. Dieser erhielt einen dreieckigen Querschnitt und wurde gegen Umkippen durch Spannseile gesichert; die Aufstellung erforderte sechs Wochen. Im Jahre 1911 ergab sich die Notwendigkeit, diesen 100 m hohen Mast auf das Doppelte zu erhöhen, da ein Neubau aus verschiedenen Gründen unmöglich war. Gegen Weihnachten 1911 war die Erhöhung fast vollständig erfolgt, als die Arbeiten durch schwere Stürme überrascht wurden. Aus irgendwelchen Ursachen war in etwa 150 m die Erhöhung eingeknickt, und es erfolgte ein Zusammensturz des Turmes, glücklicherweise ohne Folgen für die Arbeiter und die benachbarten Gebäude. Als Notbehelf wurden auf Vorschlag der vorgenannten Firma zwei 120 m hohe Rohrmaste errichtet. Diese wurden auf der Erde liegend zusammengebaut und in einem Stück mit Hilfe eines 40 m hohen Hilfsmastes aufgerichtet. Wenige Wochen nach jenem Einsturz beschloß die Telefunken-Gesellschaft die Errichtung eines Turmes von 260 m Höhe, der in seinen Grundprinzipien mit dem eingestürzten Turme übereinstimmt, und dessen Verhältnisse zu dem Eiffelturm und zu dem Kölner Dom die zeigt. Bisher hatte die Isolation derartig schwerer Türme große Schwierigkeiten bereitet. Jetzt aber war es gelungen, die für die Isolation erforderlichen großen massiven Porzellankörper herzustellen. Die Aufstellung dieses Riesenturmes erforderte trotz der ungünstigen Jahreszeit (Wintermonate 1912/13) im ganzen nur 5 Monate. Die den Turm sichernden Spannvorrichtungen wirken derart zuverlässig, daß selbst bei den stärksten Stürmen kaum eine Bewegung der Abspannseile bemerkbar ist. Diese Bewegung wäre auch durchaus unschädlich, da der Mast sowohl an der Erde wie in der Mitte mit einem Gelenk versehen ist, das etwaige Schwingungen ausgleicht. Das Bauwerk stellt das Beste dar, was an Ermöglichung des Ausbaus und an Standsicherheit zu erreichen ist. Dies tritt besonders hervor, wenn man sich die Belastung vergegenwärtigt, die dieser 260 m hohe Turm zu tragen hat. Auf diesem ruht ein Drahtseil, das ihn an der Spitze mit 30 000 kg senkrecht und mit 6000 kg wagerecht belastet, eine Beanspruchung, welcher der Eiffelturm trotz der in ihn hineingebauten gewaltigen Eisenmassen nicht gewachsen wäre. Das Gewicht des 260 m hohen Turmes beträgt 360 000 kg; der Druck auf das Fundament beläuft sich bei Stürmen auf etwa 800 000 kg. Dieser 260 m-Turm befindet sich in Nauen in zwei Ausführungen; außerdem sind dort noch vorhanden: 2 Maste von je 150 m und 4 Maste von je 120 m Höhe; ferner ein 134 m hoher Turm. Trotz des verblüffend leichten Aufbaus sind alle diese Türme durchaus standsicher.

Große Leistungen ermöglicht das Eisen insbesondere im Hochbau bei der Errichtung der »Wolkenkratzer« der amerikanischen Großstädte. Noch im Jahre 1880 begnügte man sich in den Vereinigten Staaten mit 5–6 Stockwerken, bis man durch das Steigen der Bodenpreise gezwungen wurde, »in den offenen Raum zu flüchten«.

In der baulichen Ausbildung der Wolkenkratzer sind zwei Zeitabschnitte zu unterscheiden, deren erster bis zum Ende der achtziger Jahre des vorigen Jahrhunderts, deren zweiter bis zur Gegenwart reicht. In dem ersten Zeitabschnitt übertrug man die für ein gewöhnliches Steingebäude üblichen Baugrundsätze auf Gebäude von doppelter und dreifacher Höhe. Hierbei war das Mauerwerk der hauptsächlich tragende Teil, während das Eisen nur zur gegenseitigen Versteifung der Wände, der Balkenlagen und des Daches benutzt wurde. Bald aber stellte sich heraus, daß diese Bauweise für die Errichtung höherer Gebäude nicht benutzbar war, weil in den unteren Geschossen die Mauerstärke ungebührlich vergrößert werden mußte, infolgedessen der verfügbare Bebauungsraum in unerwünschtem Maße beengt wurde. Die Eigenlast der Gebäude und damit deren Druck auf die Fundamente wurde ungemein groß. Hierdurch gelangte man auf eine andere Bauweise, die sog. »Skelett- und Furnierkonstruktion« (skeleton and veneer construction). Die bisher benutzten schweren Mauerwerksmassen sind hierbei durch aus Eisen hergestellte Gerippe ersetzt, die die sämtlichen Belastungen aufnehmen und auf das Fundament übertragen. Die Verteilung der inneren Räume läßt sich leicht in das Gerippe einbauen, während die feuerfesten Verkleidungen in Stein, Ziegel, Terrakotta u. dgl. gleichsam wie ein Furnier das ganze innere Eisengerippe umgeben. Diese Gerippebauart hat gegenüber der früheren Bauweise noch den großen Vorzug des raschen Aufbaus. Bauten, die früher ein Jahr und mehr beanspruchten, werden jetzt in 5–6 Monaten errichtet. Die mit dieser Bauweise zu erreichende größte Gebäudehöhe schätzt man auf 600 m.

Der höchste Wolkenkratzer ist das in dargestellte Woolworth-Gebäude in New York, das mit einem Kostenaufwand von 80 Mill. Mk. errichtet wurde. Es liegt am Broadway mit einer Front von 47 m und auf dem Park Place und Barklay Street mit einer Fassadenlänge von je 60 m. Der Turm erhebt sich vom Broadway mit 55 Stockwerken und besitzt 26 m im Quadrat. Der übrige Teil des Gebäudes hat 29 Stockwerke. Die Höhe des Turms über dem Straßenpflaster beträgt 221 m. Da auch unter der Straße noch Geschosse von 37,50 m Tiefe liegen, so ergibt sich eine Gesamthöhe vom Fundament bis zur Spitze des Turms von 258,50 m. Wenn sämtliche Räume vermietet sind, faßt der Bau 10 000 Personen. Der ausführende Architekt Cass Gilbert hat es verstanden, durch Anwendung des gotischen Stils und durch eigenartige Farbenzusammenstellung des Mauerwerks einen durchaus künstlerisch und harmonisch wirkenden Eindruck zu erwecken. Die von der Otis-Gesellschaft gelieferten, den Innenverkehr vermittelnden gewaltigen 26 elektrischen Fahrstühle besitzen eine Geschwindigkeit von 3,5 m in der Sekunde.

Angesichts der Wohnungsnot ist man auch in Deutschland dem Bau von Wolkenkratzern nähergetreten, wegen der hohen Eisenpreise aber bisher ohne tatsächlichen Erfolg. Da ist von Interesse, daß der Bau von Häusern bis zu 22 Stockwerken möglich ist ohne Anwendung von Eisen. Vorbedingung für derartige hohe Häuser ist, daß sie mit rundem oder elliptischem Grundriß aufgeführt werden und hierdurch befähigt sind, dem Winddruck besser zu widerstehen als Gebäude mit flachen Wänden und rechteckigem Grundriß.

In der neuesten Zeit nimmt der Eisenbeton in schnell steigendem Maße an Bedeutung als Baustoff zu. Derselbe besteht aus einer innigen Vereinigung von Eisen und Beton und verdankt seine hohe Festigkeit dem Umstande, daß jeder der beiden Baustoffe, aus denen er zusammengesetzt ist, diejenige Beanspruchung aufnimmt, wofür er besonders geeignet ist. Das Eisen nimmt die Zugspannungen, der Beton nimmt die Druckbeanspruchungen auf. Der Eisenbeton, der sich durch unbedingte Feuersicherheit, schnelle und billige Ausführbarkeit, Dauerhaftigkeit und leichtes Anpassungsvermögen auszeichnet, wird in der Weise hergestellt, daß ein Netzwerk von Eisenstäben, das in seiner Gestalt dem zu schaffenden Bauwerk entspricht, von einer Schalung umgeben wird und in dieser Schalung mit flüssigem Beton umgossen wird, der bei seiner Erstarrung eine unlösbare Verbindung mit dem eisernen Netzwerk eingeht. Die weitestgehende Verwendung findet der Eisenbeton zunächst im Hoch- und Brückenbau, sodann im Tiefbau und im Wasserbau. Die weitest gespannte Eisenbetonbrücke überschreitet den Mississippi bei Minneapolis mit einem Bogen von 121,92 m Weite und 26,82 m Pfeilhöhe. Jenseits des Ozeans verwendet man den Eisenbeton auch als Baustoff für Wolkenkratzer. Neuerdings hat der Eisenbeton eine zunehmende Bedeutung als Schiffbaustoff gewonnen, und zwar sowohl für Binnen-, wie für Seeschiffe. Als Vorzüge des Eisenbetonschiffbaus sind außer den bereits genannten zu nennen: Wasserdichtheit, elastisches Verhalten gegen Stoß, kurze Bauzeit, Möglichkeit der Reihenherstellung von Schiffen gleicher Bauart, geringe Reibung im Wasser, hohe Widerstandskraft gegen Seewasser, geringer Ansatz von Pflanzen und Muscheln am Schiffskörper. Anfangs wurde die Einführung des Eisenbetons in den Schiffbau durch den Umstand stark erschwert, daß sich das Eigengewicht der Schiffe im Verhältnis zu deren Ladefähigkeit sehr ungünstig gestaltete. Dieses Mißverhältnis scheint aber durch Schaffung eines sehr leichten Betons beseitigt zu sein. Schließlich werden jetzt auch Eisenbahnwagen in steigendem Maße aus Eisenbeton hergestellt. Der aus Eisenbeton hergestellte Wagen hat gegenüber dem eisernen Wagen den großen, bei den jetzigen hohen Eisenpreisen besonders wichtigen Vorzug, daß er erheblich weniger Eisen in Anspruch nimmt; so stehen beispielsweise den 2200 kg Profileisen des eisernen offenen 20 t-Güterwagens nur 700 kg Bandeisen und 200 kg Flach- und Quadrateisen des Eisenbetonwagens gegenüber.

Schöpfungen der Ingenieurtechnik der Neuzeit

Подняться наверх