Читать книгу Исследование и оценка параметров сигналов в распределенных информационных системах. Для студентов технических специальностей - Геннадий Федорович Вильдяйкин, Геннадий Федорович Русаков - Страница 11
Взаимодействие полей
ОглавлениеИсследование взаимодействия физических полей для задач защиты информации
Рассмотрим информацию как многообразия физических полей, их суперпозиции и нелинейных взаимодействий. Взаимодействие составляющих физических полей показаны на рисунке 4.
Риc. 4 – Поля взаимодействий
Модель линейных взаимодействий
Отклик или реакция среды на внешнее воздействие физического поля или результат взаимодействия физических полей обозначим буквой О. Воздействия – В.
В отсутствие нелинейных структур, сред, элементов результат взаимодействия описывается линейной зависимостью (5.1),где α – восприимчивость воздействия.
Линейность описывает выполнение принципа суперпозиции (наложения, сложения). Линейные процессы, линейные закономерности и линейные зависимости встречаются часто в физических системах и в процессе взаимодействия.
Линейность предполагает выполнение принципа суперпозиции (наложения, сложения). В этом смысле линейность – категория конструктивная. Зная результат действия каждой из двух (или многих) сил на тело заданной массы и пользуясь принципом суперпозиции, можно ответить на вопрос: «Как будет двигаться это же тело под действием суммарной силы?». Это же можно сказать и о действии суммарного электрического или магнитного полей. Примеры можно продолжить
В природе встречаются линейные процессы, линейные закономерности и линейные зависимости. Как теперь стало понятно, линейные закономерности скорее исключение.
Рассмотрим суперпозицию ЭМП-ЭМП и поляризацию
ЭМП рассматривали как волновой процесс, который описывается однородным уравнением Гельмгольца (6.1), где (6.2) – оператор Лапласа, (6.3) – волновое число или постоянная распространения, (6.4) – абсолютные диэлектрическая и магнитная проницаемости, (6.5) – относительные диэлектрическая и магнитная проницаемости.
Рассмотрим плоскую электромагнитную волну. Это волновой процесс, у которого амплитуды электрической и магнитной составляющих поля во всех точках плоскости, перпендикулярной направлению распространения волны, имеют одинаковые значения.
Волновое уравнение для плоского поля является линейным дифференциальным уравнением, сумма нескольких его решений также будет являться решением этого уравнения. Таким образом, сложные типы электромагнитных волн можно представлять себе составленными из большого числа элементарных плоских волн с различными амплитудами, фазами и направлениями распространения. В большинстве практических задач, однако, эта точка зрения имеет лишь методическое значение; методы количественного анализа для таких задач будут рассмотрены ниже. Лишь в случае, когда элементарные плоские волны распространяются в одном и том же направлении, имеет смысл вместо суммарной волны рассматривать её элементарные составляющие и находить суммарные свойства путём суперпозиции свойств составляющих. Для таких сложных волн ориентация векторов поля описывается понятием поляризации волны (рис.5).
Рис. 5 – (а) Неполяризованная волна, (b) Вертикально поляризованная волна, (с) Горизонтально поляризованная волна, (d) Эллиптически поляризованная волна, (е) Волна, поляризованная по кругу.
Для элементарной плоской однородной волны векторы электрического и магнитного полей всегда взаимно перпендикулярны в любой точке пространства.
Сочетание элементарных волн, распространяющихся в одном направлении, при произвольной ориентации их векторов поля, называется неполяризованной волной. Её отдельные составляющие волны могут иметь также произвольные амплитуды и фазы [рис.].