Читать книгу Самые знаменитые ученые России - Геннадий Прашкевич - Страница 6
Михаил Васильевич Остроградский
ОглавлениеМатематик, механик.
Родился 12 сентября 1801 года в селе Пашенном, Кобелякского уезда Полтавской губернии.
Первоначальное образование Остроградский получил в пансионе при Полтавской гимназии, называвшемся «Домом для воспитания бедных дворян», а затем в самой гимназии.
Мечтой Остроградского было стать военным.
В 1816 отец повез Остроградского в Петербург для зачисления в один из гвардейских полков, но по настоятельному совету одного из близких родственников, заметившего склонность юноши к математике, его определили в Харьковский университет. Но это нисколько не отбило у него охоту стать военным. Пусть не гвардеец, но все равно военный! – Остроградский готов был даже смириться с незавидным положением провинциального пехотного или артиллерийского офицера. Лишь к концу второго года обучения в нем по-настоящему проснулся интерес к математике. Это случилось, когда он перешел жить на квартиру своего преподавателя Павловского.
В 1820 году Остроградский с блеском сдал все необходимые для окончания университета экзамены. За отличные знания ректор Харьковского университета предложил присудить Остроградскому степень магистра, но в итоге Остроградский не получил даже диплома, поскольку выяснилось, что за все время учебы он ни разу не посетил обязательных лекций по богословию.
Нисколько не обескураженный случившимся, в мае 1822 года Остроградский уехал в Париж, где с громадным интересом слушал лекции знаменитых французских математиков О. Коши, П. Лапласа, Ж. Фурье. В Париже в 1825 году Остроградский выполнил первую самостоятельную работу «О волнообразном движении жидкости в цилиндрическом сосуде». Будучи подана в Парижскую академию наук эта работа была одобрена и опубликована.
Жизнь в Париже была не дешевой.
Занимаясь наукой, Остроградский одновременно преподавал в колледже.
Это, конечно, мешало научной работе, но характер ученого был прост. Математика для него была не прибежищем, не условным местом, где можно было спрятаться от мира, а напротив, главным делом жизни. Соответственно, и сам предмет занятий накладывал отпечаток на характер Остроградского.
Гораздо позже, касаясь особой притягательной силы математики, некоего скрытого ее волшебства, математик А. Я. Хинчин писал:
«В обывательских тяжбах всякого каждая из спорящих сторон исходит, как правило, из желательного ей, выгодного для нее решения вопроса и с большей или меньшей изобретательностью изыскивает возможно более убедительную аргументацию для решения вопроса в свою пользу. В зависимости от эпохи, среды и содержания спора стороны при этом апеллируют к тому или другому высшему авторитету – общечеловеческой морали, естественному праву, священному писанию, юридическому кодексу, действующим правилам внутреннего распорядка, а часто и к высказываниям отдельных авторитетных ученых или признанных политических руководителей. Все мы много раз наблюдали, с какой страстностью ведутся подобные споры. Одна только математическая наука полностью от всего этого избавлена. Каждый математик рано привыкает к тому, что в его науке всякая попытка по тем или иным мотивам действовать тенденциозно, заранее склоняясь к тому или другому решению вопроса и прислушиваясь только к аргументам, говорящим в пользу избранного решения, – всякая такая попытка заведомо обречена на неудачу, и ничего, кроме разочарования, пытающемуся принести не может. Поэтому математик быстро привыкает к тому, что в его науке выгодна только правильная, объективная, лишенная всякой тенденциозности аргументация».
В ноябре 1827 года Остроградский вернулся в Россию.
В 1828 году его избрали адъюнктом Петербургской Академии наук, а в 1831 – ординарным академиком по отделу прикладной математики.
Занимаясь наукой Остроградский много времени отдавал преподаванию.
С 1828 года он являлся профессором офицерских классов Морского кадетского корпуса, с 1830 года – профессором Института корпуса инженеров путей сообщения, с 1832 года – профессором Главного педагогического института, а с 1840 года – Главного инженерного училища, наконец, с 1841 года он – профессор Главного артиллерийского училища в Петербурге.
Общаясь со слушателями, Остроградский стремился демонстрировать им самые последние достижения науки. В Институте инженеров путей сообщения, он, например, рассказывал о только что появившихся работах Абеля по алгебраическим функциям и об исследованиях Штурма относительно отделения корней алгебраических уравнений – о так называемой теореме Штурма. Не случайно из многочисленных слушателей Остроградского вышли такие известные ученые, считавшие себя его учениками, как И. А. Вышнеградский, Н. Н. Петров, Н. С. Будаев, Н. Ф. Ястржембский, В. Н. Шкляревич, П. Л. Лавров, Д. И. Журавский, И. П. Колонг и другие.
Основные работы Остроградского относятся к математическому анализу, теоретической механике, математической физике. Известен он многочисленными работами по теории чисел, алгебре, геометрии, теории вероятностей, баллистики. Им была решена важная задача о распространении волн на поверхности жидкости, заключенной в бассейне, имеющем форму круглого цилиндра. Оценивая работы Остроградского, известный механик и математик Н. Е. Жуковский писал, что «…они захватывают собою почти всю область, на разрешении которой сосредотачивались в то время мысли выдающихся европейских геометров. В тот период расцвета прикладных наук, когда прогресс математических знаний дал сразу возможность разрешить целый ряд существенных вопросов естествознания, мы часто встречаемся с однородными работами выдающихся мыслителей. Нам, русским, отрадно отметить теперь, что в это время деятельности Фурье, Коши, Пуассона, Якоби и Гаусса мы не остались в стороне, так как имели Остроградского».
В работах по теории распространения тепла в твердых телах и в жидкостях Остроградский получил дифференциальные уравнения распространения тепла и одновременно пришел к ряду важнейших результатов в области математического анализа: нашел формулу преобразования интеграла по объему в интеграл по поверхности (так называемая формула Остроградского-Гаусса). Он ввел понятие сопряженного дифференциального оператора, доказал ортогональность собственных функций данного оператора и сопряженного, установил принцип разложимости функций в ряд по собственным функциям и принцип локализации для тригонометрических рядов. Стоит отметить, что теория распространения тепла в жидкости впервые была построена именно Остроградским, так как предыдущие исследования французских математиков Ж. Фурье и С. Пуассона были основаны ими на ошибочных предпосылках. Занимался Остроградский также вопросами упругости, небесной механики, теории магнетизма.
Установленная Остроградским в 1828 году формула преобразования интеграла по объему в интеграл по поверхности была обобщена им в 1834 году на случай n-кратного интеграла. При помощи этой формулы он нашел вариацию кратного интеграла. В работе «О преобразовании переменных в кратных интегралах», выполненной в 1836, а опубликованной в 1838 году, он дал вывод (излагаемый теперь во всех учебниках математического анализа) правила преобразования переменных интегрирования в двойных и тройных интегралах. Один из частных результатов, полученных Остроградским в теории интегрирования рациональных функций, – выделение рациональной части интеграла (метод Остроградского) – также излагается в учебниках.
В теоретической механике Остроградскому принадлежат фундаментальные результаты, связанные с развитием принципа возможных перемещений, вариационных принципов механики, а также с решением ряда частных задач.
В «Мемуаре об общей теории удара» (1854) Остроградский впервые дал общий метод определения скоростей точек какой угодно системы при ударе о неупругую связь, то есть построил общую теорию удара.
Общий вариационный принцип почти одновременно был высказан в 40-х годах XIX века для консервативных систем – известным английским математиком У. Гамильтоном, а для неконсервативных систем – Остроградским. В мемуарах «Об интегралах общих уравнений динамики» (1848) и «О дифференциальных уравнениях в проблеме изопериметров» (1850) Остроградский обобщил эти результаты на общую изопериметрическую задачу вариационного исчисления. Сколь существенны были полученные Остроградским результаты, можно судить по тому, что известный его мемуар о вычислении вариаций кратких интегралов, напечатанный в 1834 году в изданиях Российской академии наук, в 1861 году появился в полном переводе как приложение к книге английского математика и историка математики Тотгентера, посвященной истории развития вариационного исчисления.
Очень важными оказались работы Остроградского по баллистике.
В «Мемуаре об определенных квадратурах» (1839) он составил специальные таблицы для облегчения вычисления параметров полета артиллерийского снаряда. Огромный практический интерес представили работы Остроградского, посвященные выяснению влияния выстрела на лафет орудия. В постоянном интересе к подобным работам, несомненно, сказалась юношеская нереализованная мечта ученого стать военным.
Критерием ценности математических исследований для Остроградского всегда служила практика, возможность незамедлительно использовать полученные результаты в практической деятельности. В этом отношении очень характерны его исследования по теории вероятностей. Кстати, одно из них, являющееся началом статистических методов браковки, было вызвано к жизни прямой необходимостью облегчить работы по проверке товаров, поставляемых армии.
Остроградский написал множество популярных статей и педагогических исследований. Ему принадлежат превосходные для своего времени учебники – «Пособие начальной геометрии», «Курс небесной механики», «Лекции алгебраического и трансцендентного анализа», «Программа и конспект тригонометрии для военно-учебных заведений». Он – один из основателей петербургской математической школы, академик с 1830 года.
За научные заслуги Остроградский был избран действительным членом Академии наук в Нью-Йорке (1834), Туринской академии (1841), Национальной академии Деи Линчеи в Риме (1853), членом-корреспондентом Парижской Академии наук (1856).
Умер Остроградский 20 декабря 1861 года в своем поместье под Полтавой.