Читать книгу Draining for Profit, and Draining for Health - George E. Waring - Страница 4
CHAPTER III. - HOW TO GO TO WORK TO LAY OUT A SYSTEM OF DRAINS.
ОглавлениеHow to lay out the drains; where to place the outlet; where to locate the main collecting lines; how to arrange the laterals which are to take the water from the soil and deliver it at the mains; how deep to go; at what intervals; what fall to give; and what sizes of tile to use—these are all questions of great importance to one who is about to drain land.
On the proper adjustment of these points, depend the economy and effectiveness of the work. Time and attention given to them, before commencing actual operations, will prevent waste and avoid failure. Any person of ordinary intelligence may qualify himself to lay out under-drains and to superintend their construction—but the knowledge which is required does not come by nature. Those who have not the time for the necessary study and practice to make a plan for draining their land, will find it economical to employ an engineer for the purpose. In this era of railroad building, there is hardly a county in America which has not a practical surveyor, who may easily qualify himself, by a study of the principles and directions herein set forth, to lay out an economical plan for draining any ordinary agricultural land, to stake the lines, and to determine the grade of the drains, and the sizes of tile with which they should be furnished.
[pg 047]
On this subject Mr. Gisborne says: "If we should give a stimulus to amateur draining, we shall do a great deal of harm. We wish we could publish a list of the moneys which have been squandered in the last 40 years in amateur draining, either ineffectually or with very imperfect efficiency. Our own name would be inscribed in the list for a very respectable sum. Every thoughtless squire supposes that, with the aid of his ignorant bailiff, he can effect a perfect drainage of his estate; but there is a worse man behind the squire and the bailiff—the draining conjuror. * * * * * * These fellows never go direct about their work. If they attack a spring, they try to circumvent it by some circuitous route. They never can learn that nature shows you the weakest point, and that you should assist her—that hit him straight in the eye is as good a maxim in draining as in pugilism. * * * * * * If you wish to drain, we recommend you to take advice. We have disposed of the quack, but there is a faculty, not numerous but extending, and whose extension appears to us to be indispensable to the satisfactory progress of improvements by draining—a faculty of draining engineers. If we wanted a profession for a lad who showed any congenial talent, we would bring him up to be a draining engineer." He then proceeds to speak of his own experience in the matter, and shows that, after more than thirty years of intelligent practice, he employed Mr. Josiah Parkes to lay out and superintend his work, and thus effected a saving, (after paying all professional charges,) of fully twelve per cent. on the cost of the draining, which was, at the same time, better executed than any that he had previously done.
It is probable that, in nearly all amateur draining, the unnecessary frequency of the lateral drains; the extravagant size of the pipes used; and the number of useless angles which result from an unskillful arrangement, would amount to an expense equal to ten times the cost of the[pg 048] proper superintendence, to say nothing of the imperfect manner in which the work is executed. A common impression seems to prevail, that if a 2-inch pipe is good, a 3-inch pipe must be better, and that, generally, if draining is worth doing at all, it is worth overdoing; while the great importance of having perfectly fitting connections is not readily perceived. The general result is, that most of the tile-draining in this country has been too expensive for economy, and too careless for lasting efficiency.
It is proposed to give, in this chapter, as complete a description of the preliminary engineering of draining as can be concentrated within a few pages, and a hope is entertained, that it will, at least, convey an idea of the importance of giving a full measure of thought and ingenuity to the maturing of the plan, before the execution of the work is commenced. "Farming upon paper" has never been held in high repute, but draining upon paper is less a subject for objection. With a good map of the farm, showing the comparative levels of outlet, hill, dale, and plain, and the sizes and boundaries of the different in closures, a profitable winter may be passed—with pencil and rubber—in deciding on a plan which will do the required work with the least possible length of drain, and which will require the least possible extra deep cutting; and in so arranging the main drains as to require the smallest possible amount of the larger and more costly pipes; or, if only a part of the farm is to be drained during the coming season, in so arranging the work that it will dovetail nicely with future operations. A mistake in actual work is costly, and, (being buried under the ground,) is not easily detected, while errors in drawing upon paper are always obvious, and are remedied without cost.
For the purpose of illustrating the various processes connected with the laying out of a system of drainage, the mode of operating on a field of ten acres will be detailed,[pg 049] in connection with a series of diagrams showing the progress of the work.
A Map of the Land is first made, from a careful survey. This should be plotted to a scale of 50 or 100 feet to the inch,3 and should exhibit the location of obstacles which may interfere with the regularity of the drains—such as large trees, rocks, etc., and the existing swamps, water courses, springs, and open drains. (Fig. 4.)
The next step is to locate the contour lines of the land, or the lines of equal elevation—also called the horizontal lines—which serve to show the shape of the surface. To do this, stake off the field into squares of 50 feet, by first running a base line through the center of the greatest length of the field, marking it with stakes at intervals of 50 feet, then stake other lines, also at intervals of 50 feet, perpendicular to the base line, and then note the position of the stakes on the maps; next, by the aid of an engineer's level and staff, ascertain the height, (above an imaginary plain below the lowest part of the field,) of the surface of the ground at each stake, and note this elevation at its proper point on the map. This gives a plot like Fig. 5. The best instrument with which to take these levels, is the ordinary telescope-level used by railroad engineers, shown in Fig. 6, which has a telescope with cross hairs intersecting each other in the center of the line of sight, and a "bubble" placed exactly parallel to this line. The instrument, fixed on a tripod, and so adjusted that it will turn to any point of the compass without disturbing the position of the bubble, will, (as will its "line of sight,") revolve in a perfectly horizontal plane. It is so placed as to command a view of a considerable stretch of the field, and its height above the imaginary plane is measured, an attendant places next to one of the stakes a levelling rod, (Fig. 7,) which is divided into feet and[pg 052] fractions of a foot, and is furnished with a movable target, so painted that its center point may be plainly seen. The attendant raises and lowers the target, until it comes exactly in the line of sight; its height on the rod denotes the height of the instrument above the level of the ground at that stake, and, as the height of the instrument above the imaginary plane has been reached, by subtracting one elevation from the other, the operator determines the height of the ground at that stake above the imaginary plane—which is called the "datum line."
Fig. 4 - MAP OF LAND, WITH SWAMPS, ROCKS, SPRINGS AND TREES. INTENDED TO REPRESENT A FIELD OF TEN ACRES BEFORE DRAINING.
Fig. 5 - MAP WITH 50-FOOT SQUARES, AND CONTOUR LINES.
Fig. 6 - LEVELLING INSTRUMENT.4
Fig. 7 - LEVELLING ROD.
The next operation is to trace, on the plan, lines following the same level, wherever the land is of the proper height for its surface to meet them. For the purpose of illustrating this operation, lines at intervals of elevation of[pg 053] one foot are traced on the plan in Fig. 8. And these lines show, with sufficient accuracy for practical purposes, the elevation and rate of inclination of all parts of the field—where it is level or nearly so, where its rise is rapid, and where slight. As the land rises one foot from the position of one line to the position of the line next above it, where the distance from one line to the next is great, the land is more nearly level, and when it is short the inclination is steeper. For instance, in the southwest corner of the plan, the land is nearly level to the 2-foot line; it rises slowly to the center of the field, and to the eastern side about one-fourth of the distance from the southern boundary, while an elevation coming down between these two valleys, and others skirting the west side of the former one and the southern side of the latter, are indicated by the greater nearness of the lines. The points at which the contour lines cross the section lines are found in the following manner: On the second line from the west side of the field we find the elevations of the 4th, 5th and 6th stakes from the southern boundary to be 1.9, 3.3, and 5.1. The contour lines, representing points of elevation of 2, 3, 4, and 5 feet above the datum line, will cross the 50-foot lines at their intersections, only where these intersections are marked in even feet. When they are marked with fractions of a foot, the lines must be made to cross at points between two intersections—nearer to one or the other, according to their elevations—thus between 1.9 and 3.3, the 2-foot and 3-foot contour lines must cross. The total difference of elevation, between the[pg 055] two points is 3.3—1.9=1.4; 10/14 of the space must be given to the even foot between the lines, and the 2-foot line should be 1/14 of the space above the point 1.9;—the 3-foot line will then come 3/14 below the point 3.3. In the same manner, the line from 3.3 to 5.1 is divided into 18 parts, of which 10 go to the space between the 4. and 5. lines, 7 are between 3.3 and the 4-foot line, and 1 between the 5-foot line and 5.1.
Fig. 8 - MAP WITH CONTOUR LINES.
With these maps, made from observations taken in the field, we are prepared to lay down, on paper, our system of drainage, and to mature a plan which shall do the necessary work with the least expenditure of labor and material. The more thoroughly this plan is considered, the more economical and effective will be the work. Having already obtained the needed information, and having it all before us, we can determine exactly the location and size of each drain, and arrange, before hand, for a rapid and satisfactory execution of the work. The only thing that may interfere with the perfect application of the plan, is the presence of masses of underground rock, within the depth to which the drains are to be laid.5 Where these are supposed to exist, soundings should be made, by driving a ¾-inch pointed iron rod to the rock, or to a depth of five feet where the rock falls away. By this means, measuring the distance from the soundings to the ranges of the stakes, we can denote on the map the shape and depth of sunken rocks. The shaded spot on the east side of the map, (Fig. 8,) indicates a rock three feet from the surface, which will be assumed to have been explored by sounding.
In most cases, it will be sufficient to have contour lines taken only at intervals of two feet, and, owing to the smallness of the scale on which these maps are engraved, and to avoid complication in the finished plan, where so[pg 056] much else must be shown, each alternate line is omitted. Of course, where drains are at once staked out on the land, by a practiced engineer, no contour lines are taken, as by the aid of the level and rod for the flatter portions, and by the eye alone for the steeper slopes, he will be able at once to strike the proper locations and directions; but for one of less experience, who desires to thoroughly mature his plan before commencing, they are indispensable; and their introduction here will enable the novice to understand, more clearly than would otherwise be possible, the principles on which the plan should be made.
Fig. 9 - WELL'S CLINOMETER.
For preliminary examinations, and for all purposes in which great accuracy is not required, the little instrument shown in Fig. 9—"Wells' Clinometer,"—is exceedingly simple and convenient. Its essential parts are a flat side, or base, on which it stands, and a hollow disk just half filled with some heavy liquid. The glass face of the disk is surrounded by a graduated scale that marks the angle at which the surface of the liquid stands, with reference to the flat base. The line 0.——0. being parallel to the base, when the liquid stands on that line, the flat side is horizontal; the line 90.——90. being perpendicular to[pg 057] the base, when the liquid stands on that line, the flat side is perpendicular or plumb. In like manner, the intervening angles are marked, and, by the aid of the following tables, the instrument indicates the rate of fall per hundred feet of horizontal measurement, and per hundred feet measured upon the sloping line.6
Table No. 1 shows the rise of the slope for 100 feet of the horizontal measurement. Example: If the horizontal distance is 100 feet, and the slope is at an angle of 15°, the rise will be 17–633/1000 feet.
Table No. 2 shows the rise of the slope for 100 feet of its own length. If the sloping line, (at an angle of 15°,) is 100 feet long, it rises 25.882 feet.
TABLE No. 1. | |
---|---|
Deg. | Feet. |
5 | 8.749 |
10 | 17.663 |
15 | 26.795 |
20 | 36.397 |
25 | 46.631 |
30 | 57.735 |
35 | 70.021 |
40 | 83.910 |
45 | 100.— |
50 | 119.175 |
55 | 142.815 |
60 | 173.205 |
65 | 214.451 |
70 | 274.748 |
75 | 373.205 |
80 | 567.128 |
85 | 1143.01 |
TABLE No. 2 | |
---|---|
Deg. | Feet. |
5 | 8.716 |
10 | 17.365 |
15 | 25.882 |
20 | 34.202 |
25 | 42.262 |
30 | 50.— |
35 | 57.358 |
40 | 64.279 |
45 | 70.711 |
50 | 76.604 |
55 | 81.915 |
60 | 86.602 |
65 | 90.631 |
70 | 93.969 |
75 | 96.593 |
80 | 98.481 |
85 | 99.619 |
With the maps before him, showing the surface features of the field, and the position of the under-ground rock, the drainer will have to consider the following points:
1. Where, and at what depth, shall the outlet be placed?
2. What shall be the location, the length and the depth of the main drain?
3. What subsidiary mains—or collecting drains—shall connect the minor valleys with the main?
4. What may best be done to collect the water of large springs and carry it away?
5. What provision is necessary to collect the water that flows over the surface of out-cropping rock, or[pg 058] along springy lines on side hills or under banks?
6. What should be the depth, the distance apart, the direction, and the rate of fall, of the lateral drains?
7. What kind and sizes of tile should be used to form the conduits?
8. What provision should be made to prevent the obstruction of the drains, by an accumulation of silt or sand, which may enter the tiles immediately after they are laid, and before the earth becomes compacted about them; and from the entrance of vermin?
1. The outlet should be at the lowest point of the boundary, unless, (for some especial reason which does not exist in the case under consideration, nor in any usual case,) it is necessary to seek some other than the natural outfall; and it should be deep enough to take the water of the main drain, and laid on a sufficient inclination for a free flow of the water. It should, where sufficient fall can be obtained without too great cost, deliver this water over a step of at least a few inches in height, so that the action of the drain may be seen, and so that it may not be liable to be clogged by the accumulation of silt, (or mud,) in the open ditch into which it flows.
2. The main drain should, usually, be run as nearly in the lowest part of the principal valley as is consistent with tolerable straightness. It is better to cut across the point of a hill, to the extent of increasing the depth for a few rods, than to go a long distance out of the direct course to keep in the valley, both because of the cost of the large tile used in the main, and of the loss of fall occasioned by the lengthening of the line. The main should be continued from the outlet to the point at which it is most convenient to collect the more remote sub-mains, which bring together the water of several sets of laterals. As is the case in the tract under consideration, the depth of the main is often restricted, in nearly level land, toward the upper end of the flat which lies next to the outlet,[pg 059] by the necessity for a fall and the difficulty which often exists in securing a sufficiently low outlet. In such case, the only rule is to make it as deep as possible. When the fall is sufficient, it should be placed at such depth as will allow the laterals and sub-mains which discharge into it to enter at its top, and discharge above the level of the water which flows through it.
Fig. 10 - STONE PIT TO CONNECT SPRING WITH DRAIN.
3. Subsidiary mains, or sub-mains, connecting with the main drains, should be run up the minor valleys of the land, skirting the bases of the hills. Where the valley is a flat one, with rising ground at each side, there should be a sub-main, to receive the laterals from each hill side. As a general rule, it may be stated, that the collecting drain at the foot of a slope should be placed on the line which is first reached by the water flowing directly down over its surface, before it commences its lateral movement down the valley; and it should, if possible, be so arranged that it shall have a uniform descent for its whole distance. The proper arrangement of these collecting drains requires more skill and experience than any other branch of the work, for on their disposition depends, in a great measure, the economy and success of the undertaking.
4. Where springs exist, there should be some provision made for collecting their water in pits filled with loose[pg 060] stone, gravel, brush or other rubbish, or furnished with several lengths of tile set on end, one above the other, or with a barrel or other vessel; and a line of tile of proper size should be run directly to a main, or sub-main drain. The manner of doing this by means of a pit filled with stone is shown in Fig. 10. The collection of spring water in a vertical tile basin is shown in Fig. 11.
Fig. 11 - STONE AND TILE BASIN FOR SPRING WITH DRAIN.
5. Where a ledge of shelving rock, of considerable size, occurs on land to be drained, it is best to make some provision for collecting, at its base, the water flowing over its surface, and taking it at once into the drains, so that it may not make the land near it unduly wet. To effect this, a ditch should be dug along the base of the rock, and quite down to it, considerably deeper than the level of the proposed drainage; and this should be filled with small stones to that level, with a line of tile laid on top of the stones, a uniform bottom for the tile to rest upon being formed of cheap strips of board. The tile and stone should then be covered with inverted sods, with wood shavings, or with other suitable material, which will prevent the entrance of earth, (from the covering of the drain,) to choke them. The water, following down the surface of the rock, will rise through the stone work and, entering the tile, will flow off. This method may be used for springy hill sides.
6. The points previously considered relate only to the[pg 061] collection of unusual quantities of water, (from springs and from rock surfaces,) and to the removal from the land of what is thus collected, and of that which flows from the minor or lateral drains.
The lateral drains themselves constitute the real drainage of the field, for, although main lines take water from the land on each side, their action in this regard is not usually considered, in determining either their depth or their location, and they play an exceedingly small part in the more simple form of drainage—that in which a large tract of land, of perfectly uniform slope, is drained by parallel lines of equal length, all discharging into a single main, running across the foot of the field. The land would be equally well drained, if the parallel lines were continued to an open ditch beyond its boundary—the main tile drain is only adopted for greater convenience and security. It will simplify the question if, in treating the theory of lateral drains, it be assumed that our field is of this uniform inclination, and admits of the use of long lines of parallel drains. In fact, it is best in practice to approximate as nearly as possible to this arrangement, because deviations from it, though always necessary in broken land, are always more expensive, and present more complicated engineering problems. If all the land to be drained had a uniform fall, in a single direction, there would be but little need of engineering skill, beyond that which is required to establish the depth, fall, and distance apart, at which the drains should be laid. It is chiefly when the land pitches in different directions, and with varying inclination, that only a person skilled in the arrangement of drains, or one who will give much consideration to the subject, can effect the greatest economy by avoiding unnecessary complication, and secure the greatest efficiency by adjusting the drains to the requirements of the land.
Assuming the land to have an unbroken inclination, so as to require only parallel drains, it becomes important to[pg 062] know how these parallel drains, (corresponding to the lateral drains of an irregular system,) should be made.
The history of land draining is a history of the gradual progress of an improvement, from the accomplishment of a single purpose, to the accomplishment of several purposes, and most of the instruction which modern agricultural writers have given concerning it, has shown too great dependence upon the teachings of their predecessors, who considered well the single object which they sought to attain, but who had no conception that draining was to be so generally valuable as it has become. The effort, (probably an unconscious one,) to make the theories of modern thorough-draining conform to those advanced by the early practitioners, seems to have diverted attention from some more recently developed principles, which are of much importance. For example, about a hundred years ago, Joseph Elkington, of Warwickshire, discovered that, where land is made too wet by under-ground springs, a skillful tapping of these—drawing off their water through suitable conduits—would greatly relieve the land, and for many years the Elkington System of drainage, being a great improvement on every thing theretofore practiced, naturally occupied the attention of the agricultural world, and the Board of Agriculture appointed a Mr. Johnstone to study the process, and write a treatise on the subject.
Catch-water drains, made so as to intercept a flow of surface water, have been in use from immemorial time, and are described by the earliest writers. Before the advent of the Draining Tile, covered drains were furnished with stones, boards, brush, weeds, and various other rubbish, and their good effect, very properly, claimed the attention of all improvers of wet land. When the tile first made its appearance in general practice, it was of what is called the "horse-shoe" form, and—imperfect though it was—it was better than anything that had preceded it, and was received with high approval, wherever it became known.[pg 063] The general use of all these materials for making drains was confined to a system of partial drainage, until the publication of a pamphlet, in 1833, by Mr. Smith, of Deanston, who advocated the drainage of the whole field, without reference to springs. From this plan, but with important modifications in matters of detail, the modern system of tile draining has grown. Many able men have aided its progress, and have helped to disseminate a knowledge of its processes and its effects, yet there are few books on draining, even the most modern ones, which do not devote much attention to Elkington's discovery; to the various sorts of stone and brush drains; and to the manufacture and use of horse-shoe tile;—not treating them as matters of antiquarian interest, but repeating the instructions for their application, and allowing the reasoning on which their early use was based, to influence, often to a damaging extent, their general consideration of the modern practice of tile draining.
These processes are all of occasional use, even at this day, but they are based on no fixed rules, and are so much a matter of traditional knowledge, with all farmers, that instruction concerning them is not needed. The kind of draining which is now under consideration, has for its object the complete removal of all of the surplus water that reaches the soil, from whatever source, and the assimilation of all wet soils to a somewhat uniform condition, as to the ease with which water passes through them.
There are instances, as has been shown, where a large spring, overflowing a considerable area, or supplying the water of an annoying brook, ought to be directly connected with the under-ground drainage, and its flow neatly carried away; and, in other cases, the surface flow over large masses of rock should be given easy entrance into the tile; but, in all ordinary lands, whether swamps, springy hill sides, heavy clays, or light soils lying on retentive subsoil, all ground, in fact, which needs under-draining[pg 064] at all, should be laid dry above the level to which it is deemed best to place the drains;—not only secured against the wetting of springs and soakage water, but rapidly relieved of the water of heavy rains. The water table, in short, should be lowered to the proper depth, and, by permanent outlets at that depth, be prevented from ever rising, for any considerable time, to a higher level. This being accomplished, it is of no consequence to know whence the water comes, and Elkington's system need have no place in our calculations. As round pipes, with collars, are far superior to the "horse-shoe" tiles, and are equally easy to obtain, it is not necessary to consider the manner in which these latter should be used—only to say that they ought not to be used at all.
The water which falls upon the surface is at once absorbed, settles through the ground, until it reaches a point where the soil is completely saturated, and raises the general water level. When this level reaches the floor of the drains, the water enters at the joints and is carried off. That which passes down through the land lying between the drains, bears down upon that which has already accumulated in the soil, and forces it to seek an outlet by rising into the drains.7 For example, if a barrel, standing on end, be filled with earth which is saturated with water, and its bung be removed, the water of saturation, (that is, all which is not held by attraction in the particles of earth,) will be removed from so much of the mass as lies above the bottom of the bung-hole. If a bucket of water be now poured upon the top, it will not all run diagonally toward the opening; it will trickle down to the level of the water remaining in the barrel, and this level will rise and water will run off at the bottom of the orifice. In this manner, the water, even below the drainage level,[pg 065] is changed with each addition at the surface. In a barrel filled with coarse pebbles, the water of saturation would maintain a nearly level surface; if the material were more compact and retentive, a true level would be attained only after a considerable time. Toward the end of the flow, the water would stand highest at the points furthest distant from the outlet. So, in the land, after a drenching rain, the water is first removed to the full depth, near the line of the drain, and that midway between two drains settles much more slowly, meeting more resistance from below, and, for a long time, will remain some inches higher than the floor of the drain. The usual condition of the soil, (except in very dry weather,) would be somewhat as represented in the accompanying cut, (Fig. 12.)
Fig. 12 - LINE OF SATURATION BETWEEN DRAINS.
YY are the draings. The curved line b is the line of saturation, which has descended from a, and is approaching c.
To provide for this deviation of the line of saturation, in practice, drains are placed deeper than would be necessary if the water sunk at once to the level of the drain floor, the depth of the drains being increased with the increasing distance between them.
Theoretically, every drop of water which falls on a field should sink straight down to the level of the drains, and force a drop of water below that level to rise into the drain and flow off. How exactly this is true in nature cannot be known, and is not material. Drains made in pursuance of this theory will be effective for any actual condition.
[pg 066]
The depth to which the water table should be withdrawn depends, not at all on the character of the soil, but on the requirements of the crops which are to be grown upon it, and these requirements are the same in all soils—consequently the depth should be the same in all.
What, then, shall that depth be? The usual practice of the most experienced drainers seems to have fixed four feet as about the proper depth, and the arguments against anything less than this, as well as some reasons for supposing that to be sufficient, are so clearly stated by Mr. Gisborne that it has been deemed best to quote his own words on the subject:
"Take a flower-pot a foot deep, filled with dry soil. Place it in a saucer containing three inches of water. The first effect will be, that the water will rise through the hole in the bottom of the pot till the water which fills the interstices between the soil is on a level with the water in the saucer. This effect is by gravity. The upper surface of this water is our water-table. From it water will ascend by attraction through the whole body of soil till moisture is apparent at the surface. Put in your soil at 60°, a reasonable summer heat for nine inches in depth, your water at 47°, the seven inches' temperature of Mr. Parke's undrained bog; the attracted water will ascend at 47°, and will diligently occupy itself in attempting to reduce the 60° soil to its own temperature. Moreover, no sooner will the soil hold water of attraction, than evaporation will begin to carry it off, and will produce the cold consequent thereon. This evaporated water will be replaced by water of attraction at 47°, and this double cooling process will go on till all the water in the water-table is exhausted. Supply water to the saucer as fast as it disappears, and then the process will be perpetual. The system of saucer-watering is reprobated by every intelligent gardener; it is found by experience to chill vegetation; besides which,[pg 067] scarcely any cultivated plant can dip its roots into stagnant water with impunity. Exactly the process which we have described in the flower-pot is constantly in operation on an undrained retentive soil; the water-table may not be within nine inches of the surface, but in very many instances it is within a foot or eighteen inches, at which level the cold surplus oozes into some ditch or other superficial outlet. At eighteen inches, attraction will, on the average of soils, act with considerable power. Here, then, you have two obnoxious principles at work, both producing cold, and the one administering to the other. The obvious remedy is, to destroy their united action; to break through their line of communication. Remove your water of attraction to such a depth that evaporation cannot act upon it, or but feebly. What is that depth? In ascertaining this point we are not altogether without data. No doubt depth diminishes the power of evaporation rapidly. Still, as water taken from a 30-inch drain is almost invariably two or three degrees colder than water taken from four feet, and as this latter is generally one or two degrees colder than water from a contiguous well several feet below, we can hardly avoid drawing the conclusion that the cold of evaporation has considerable influence at 30 inches, a much-diminished influence at four feet, and little or none below that depth. If the water-table is removed to the depth of four feet, when we have allowed 18 inches of attraction, we shall still have 30 inches of defence against evaporation; and we are inclined to believe that any prejudicial combined action of attraction and evaporation is thereby well guarded against. The facts stated seem to prove that less will not suffice.
"So much on the score of temperature; but this is not all. Do the roots of esculents wish to penetrate into the earth—at least, to the depth of some feet? We believe that they do. We are sure of the brassica tribe,[pg 068] of grass, and clover. All our experience and observation deny the doctrine that roots only ramble when they are stinted of food; that six inches well manured is quite enough, better than more. Ask the Jerseyman; he will show you a parsnip as thick as your thigh, and as long as your leg, and will tell you of the advantages of 14 feet of dry soil. You will hear of parsnips whose roots descend to unsearchable depths. We will not appeal to the Kentucky carrot, which was drawn out by its roots at the antipodes; but Mr. Mechi's, if we remember right, was a dozen feet or more. Three years ago, in a midland county, a field of good land, in good cultivation, and richly manured, produced a heavy crop of cabbages. In November of that year we saw that field broken into in several places, and at the depth of four feet the soil (a tenacious marl, fully stiff enough for brick-earth) was occupied by the roots of cabbage, not sparingly—not mere capillæ—but fibres of the size of small pack-thread. A farmer manures a field of four or five inches of free soil reposing on a retentive clay, and sows it with wheat. It comes up, and between the kernel and the manure, it looks well for a time, but anon it sickens. An Irish child looks well for five or six years, but after that time potato-feeding, and filth, and hardship, begin to tell. You ask what is amiss with the wheat, and you are told that when its roots reach the clay, they are poisoned. This field is then thorough-drained, deep, at least four feet. It receives again from the cultivator the previous treatment; the wheat comes up well, maintains throughout a healthy aspect, and gives a good return. What has become of the poison? We have been told that the rain water filtered through the soil has taken it into solution or suspension, and has carried it off through the drains; and men who assume to be of authority put forward this as one of the advantages of draining. If we believed it, we could not[pg 069] advocate draining. We really should not have the face to tell our readers that water, passing through soils containing elements prejudicial to vegetation, would carry them off, but would leave those which are beneficial behind. We cannot make our water so discriminating; the general merit of water of deep drainage is, that it contains very little. Its perfection would be that it should contain nothing. We understand that experiments are in progress which have ascertained that water, charged with matters which are known to stimulate vegetation, when filtered through four feet of retentive soil, comes out pure. But to return to our wheat. In the first case, it shrinks before the cold of evaporation and the cold of water of attraction, and it sickens because its feet are never dry; it suffers the usual maladies of cold and wet. In the second case, the excess of cold by evaporation is withdrawn; the cold water of attraction is removed out of its way; the warm air from the surface, rushing in to supply the place of the water which the drains remove, and the warm summer rains, bearing down with them the temperature which they have acquired from the upper soil, carry a genial heat to its lowest roots. Health, vigorous growth, and early maturity are the natural consequences. * * * * * * * * *
"The practice so derided and maligned referring to deep draining has advanced with wonderful strides. We remember the days of 15 inches; then a step to 20; a stride to 30; and the last (and probably final) jump to 50, a few inches under or over. We have dabbled in them all, generally belonging to the deep section of the day. We have used the words 'probably final,' because the first advances were experimental, and, though they were justified by the results obtained, no one attempted to explain the principle on which benefit was derived from them. The principles on which the now prevailing depth is founded, and which we believe to be true, go[pg 070] far to show that we have attained all the advantages which can be derived from the removal of water in ordinary agriculture. We do not mean that, even in the most retentive soil, water would not get into drains which were laid somewhat deeper; but to this there must be a not very distant limit, because pure clay, lying below the depth at which wet and drought applied at surface would expand and contract it, would certainly part with its water very slowly. We find that, in coal mines and in deep quarries, a stratum of clay of only a few inches thick interposed between two strata of pervious stone will form an effectual bar to the passage of water; whereas, if it lay within a few feet of the surface, it would, in a season of heat and drought become as pervious as a cullender. But when we have got rid of the cold arising from the evaporation of free water, have given a range of several feet to the roots of grass and cereals, and have enabled retentive land to filter through itself all the rain which falls upon its surface, we are not, in our present state of knowledge, aware of any advantage which would arise from further lowering the surface of water in agricultural land. Smith, of Deanston, first called prominent attention to the fertilizing effects of rain filtered through land, and to evils produced by allowing it to flow off the surface. Any one will see how much more effectually this benefit will be attained, and this evil avoided, by a 4-foot than a 2-foot drainage. The latter can only prepare two feet of soil for the reception and retention of rain, which two feet, being saturated, will reject more, and the surplus must run off the surface, carrying whatever it can find with it. A 4-foot drainage will be constantly tending to have four feet of soil ready for the reception of rain, and it will take much more rain to saturate four feet than two. Moreover, as a gimlet-hole bored four feet from the surface of a barrel filled with water will discharge much[pg 071] more in a given time than a similar hole bored at the depth of two feet, so will a 4-foot drain discharge in a given time much more water than a drain of two feet. One is acted on by a 4-foot, and the other by a 2-foot pressure."
If any single fact connected with tile-drainage is established, beyond all possible doubt, it is that in the stiffest clay soils ever cultivated, drains four feet deep will act effectually; the water will find its way to them, more and more freely and completely, as the drying of successive years, and the penetration and decay of the roots of successive crops, modify the character of the land, and they will eventually be practically so porous that—so far as the ease of drainage is concerned—no distinction need, in practice, be made between them and the less retentive loams. For a few years, the line of saturation between the drains, as shown in Fig. 11, may stand at all seasons considerably above the level of the bottom of the tile, but it will recede year by year, until it will be practically level, except immediately after rains.
Mr. Josiah Parkes recommends drains to be laid