Читать книгу Ice Adhesion - Группа авторов - Страница 44

References

Оглавление

1 1. M. Volmer and A. Weber, Nucleus formation in supersaturated systems. Z. Phys. Chem. (Leipzig) 119, 277-301 (1926).

2 2. M. Volmer, Kinetik der Phasenbildung. first edition. Steinkopf, Dresden (1939).

3 3. L. Farkas, Keimbildungsgeschwindigkeit in übersättigten Dämpfen. Z. Phys. Chem. (Muenchen, Ger.) 125, 236-242 (1927).

4 4. R. Becker and W. Döring, Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Annalen der Physik 416, 719-752 (1935).

5 5. Y.B. Zeldovich, On the theory of new phase formation: cavitation. Acta Physicochim. USSR 18, 1-22 (1943).

6 6. D. Turnbull and J.C. Fisher, Rate of nucleation in condensed systems. J. Chem. Phys. 17, 71-73 (1949).

7 7. H.R. Pruppacher and J.D. Klett, Microphysics of Clouds and Precipitation. Springer Science & Business Media, Heidelberg (1998).

8 8. P. Rein ten Wolde and D. Frenkel, Homogeneous nucleation and the Ostwald step rule. Phys. Chem. Chem. Phys. 1, 2191-2196 (1999).

9 9. A. Tabazadeh, Y.S. Djikaev, and H. Reiss, Surface crystallization of supercooled water in clouds. Proc. Natl. Acad. Sci. USA. 99, 15873-15878 (2002).

10 10. A. Tabazadeh, Y.S. Djikaev, P. Hamill, and H. Reiss, Laboratory evidence for surface nucleation of solid polar stratospheric cloud particles. J. Phys. Chem. A 106, 10238-10246 (2002).

11 11. J.E. Kay, V. Tsemekhman, B. Larson, M. Baker, and B. Swanson, Comment on evidence for surface-initiated homogeneous nucleation. Atmos. Chem. Phys. 3, 1439-1443 (2003).

12 12. N.H. Fletcher, The Physics of Rainclouds. first edition. Cambridge University Press, Cambridge, UK (2011).

13 13. J. Feng, Y. Pang, Z. Qin, R. Ma, and S. Yao, Why condensate drops can spontaneously move away on some superhydrophobic surfaces but not on others. ACS Appl. Mater. Interfaces 4, 6618-6625 (2012).

14 14. H. Jo, K.W. Hwang, D. Kim, M. Kiyofumi, H.S. Park, M.H. Kim, and H.S. Ahn, Loss of superhydrophobicity of hydrophobic micro/nano structures during condensation. Sci. Rep. 5, 9901 (2015).

15 15. C. Dorrer and J. Rühe, Wetting of silicon nanograss: from superhydrophilic to superhydrophobic surfaces. Adv. Mater. 20, 159-163 (2008).

16 16. C. Dorrer and J. Rühe, Condensation and wetting transitions on microstructured ultrahydrophobic surfaces. Langmuir 23, 3820-3824 (2007).

17 17. R. Narhe and D. Beysens, Growth dynamics of water drops on a square-pattern rough hydrophobic surface. Langmuir 23, 6486-6489 (2007).

18 18. K. Rykaczewski, A.T. Paxson, S. Anand, X. Chen, Z. Wang, and K.K. Varanasi, Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces. Langmuir 29, 881-891 (2012).

19 19. R. Enright, N. Miljkovic, N. Dou, Y. Nam, and E.N. Wang, Condensation on superhydrophobic copper oxide nanostructures. J. Heat Transfer 10, 091304 (2012).

20 20. N. Miljkovic, D.J. Preston, R. Enright, and E.N. Wang, Electrostatic charging of jumping droplets. Nat. Commun. 4, 2517, (2013).

21 21. X. Yan, L. Zhang, S. Sett, L. Feng, C. Zhao, Z. Huang, H. Vahabi, A.K. Kota, F. Chen, and N. Miljkovic, Droplet jumping: effects of droplet size, surface structure, pinning, and liquid properties. ACS Nano 13, 1309-1323 (2019).

22 22. R. Enright, N. Miljkovic, J. Sprittles, K. Nolan, R. Mitchell, and E.N. Wang, How coalescing droplets jump. ACS Nano 8, 10352-10362 (2014).

23 23. S. Kim and K.J. Kim, Dropwise condensation modeling suitable for superhydrophobic surfaces. J. Heat Transfer 133, 081502 (2011).

24 24. S. Chavan, H. Cha, D. Orejon, K. Nawaz, N. Singla, Y.F. Yeung, D. Park, D.H. Kang, Y. Chang, Y. Takata, and N. Miljkovic, Heat transfer through a condensate droplet on hydrophobic and nanostructured superhydrophobic surfaces. Langmuir 32, 7774-7787 (2016).

25 25. S. Jung, M.K. Tiwari, N.V. Doan, and D. Poulikakos, Mechanism of supercooled droplet freezing on surfaces. Nat. Commun. 3, 615 (2012).

26 26. S. Jung, M.K. Tiwari, and D. Poulikakos, Frost halos from supercooled water droplets. Proc. Natl. Acad. Sci. U. S. A. 109, 16073-16078 (2012).

27 27. B. Zobrist, T. Koop, B.P. Luo, C. Marcolli, and T. Peter, Heterogeneous ice nucleation rate coefficient of water droplets coated by a nonadecanol monolayer. J. Phys. Chem. C 111, 2149-2155 (2007).

28 28. S. Nath and J.B. Boreyko, On localized vapor pressure gradients governing condensation and frost phenomena. Langmuir 32, 8350-8365 (2016).

29 29. J. Guadarrama-Cetina, A. Mongruel, W. González-Viñas, and D. Beysens, Percolation-induced frost formation. Europhys. Lett. 101, 16009 (2013).

30 30. V. Bahadur, L. Mishchenko, B. Hatton, J.A. Taylor, J. Aizenberg, and T. Krupenkin, Predictive model for ice formation on superhydrophobic surfaces. Langmuir 27, 14143-14150 (2011).

31 31. A. Alizadeh, M. Yamada, R. Li, W. Shang, S. Otta, S. Zhong, L. Ge, A. Dhinojwala, K.R. Conway, and V. Bahadur, Dynamics of ice nucleation on water repellent surfaces. Langmuir 28, 3180-3186 (2012).

32 32. M.A. Carignano, P.B. Shepson, and I. Szleifer, Molecular dynamics simulations of ice growth from supercooled water. Mol. Phys. 103, 2957-2967 (2005).

33 33. R. Enright, N. Miljkovic, A. Al-Obeidi, C.V. Thompson, and E.N. Wang, Condensation on superhydrophobic surfaces: The role of local energy barriers and structure length scale. Langmuir 28, 14424-14432 (2012).

34 34. J. Chen, J. Liu, M. He, K. Li, D. Cui, Q. Zhang, X. Zeng, Y. Zhang, J. Wang, and Y. Song, Superhydrophobic surfaces cannot reduce ice adhesion. Appl. Phys. Lett. 101, 111603 (2012).

35 35. X. Tian, T. Verho, and R.H.A. Ras, Moving superhydrophobic surfaces toward real-world applications. Science 352, 142-143 (2016).

36 36. J.D. Atkinson, B.J. Murray, M.T. Woodhouse, T.F. Whale, K.J. Baustian, K.S. Carslaw, S. Dobbie, D. O’Sullivan, and T.L. Malkin, The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature 498, 355-358 (2013).

37 37. J.C. Bird, R. Dhiman, H.-M. Kwon, and K.K. Varanasi, Reducing the contact time of a bouncing drop. Nature 503, 385-388 (2013).

38 38. Y. Liu, L. Moevius, X. Xu, T. Qian, J.M. Yeomans, and Z. Wang, Pancake bouncing on superhydrophobic surfaces. Nat. Phys. 10, 515-519 (2014).

39 39. X. Deng, L. Mammen, H.-J. Butt, and D. Vollmer, Candle soot as a template for a transparent robust superamphiphobic coating. Science 335, 67-70 (2012).

40 40. H. Teisala, F. Geyer, J. Haapanen, P. Juuti, J.M. Mäkelä, D. Vollmer, and H.-J. Butt, Ultrafast processing of hierarchical nanotexture for a transparent superamphiphobic coating with extremely low roll-off angle and high impalement pressure. Adv. Mater. 30, 1706529 (2018).

41 41. Y. Lu, S. Sathasivam, J. Song, C.R. Crick, C.J. Carmalt, and I.P. Parkin, Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347, 1132-1135 (2015).

42 42. W.S.Y. Wong, Surface chemistry enhancements for the tunable super-liquid repellency of low-surface-tension liquids. Nano Lett. 19, 1892-1901 (2019).

43 43. N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, and E.N. Wang, Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett. 13, 179-187 (2012).

44 44. J. Cheng, A. Vandadi, and C.-L. Chen, Condensation heat transfer on two-tier superhydrophobic surfaces. Appl. Phys. Lett. 101, 131909 (2012).

45 45. J.B. Boreyko and C.-H. Chen, Self-propelled dropwise condensate on superhydrophobic surfaces. Phys. Rev. Lett. 103, 184501 (2009).

46 46. L. Mishchenko, B. Hatton, V. Bahadur, J.A. Taylor, T. Krupenkin, and J. Aizenberg, Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4, 7699-7707 (2010).

47 47. P. Eberle, M.K. Tiwari, T. Maitra, and D. Poulikakos, Rational nanostructuring of surfaces for extraordinary icephobicity. Nanoscale 6, 4874-4881 (2014).

48 48. S. Wang, Z. Yang, G. Gong, J. Wang, J. Wu, S. Yang, and L. Jiang, Icephobicity of penguins Spheniscus Humboldti and an artificial replica of penguin feather with air-infused hierarchical rough structures. J. Phys. Chem. C 120, 15923-15929 (2016).

49 49. H. Sojoudi, M. Wang, N.D. Boscher, G.H. McKinley, and K.K. Gleason, Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces. Soft Matter 12, 1938-1963 (2016).

50 50. T.M. Schutzius, S. Jung, T. Maitra, P. Eberle, C. Antonini, C. Stamatopoulos, and D. Poulikakos, Physics of icing and rational design of surfaces with extraordinary icephobicity. Langmuir 31, 4807-4821 (2015).

51 51. M. Nosonovsky and V. Hejazi, Why superhydrophobic surfaces are not always icephobic. ACS Nano 6, 8488-8491 (2012).

52 52. P. Guo, Y. Zheng, M. Wen, C. Song, Y. Lin, and L. Jiang, Icephobic/anti-icing properties of micro/nanostructured Surfaces. Adv. Mater. 24, 2642-2648 (2012).

53 53. P.W. Wilson, W. Lu, H. Xu, P. Kim, M.J. Kreder, J. Alvarenga, and J. Aizenberg, Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Phys. Chem. Chem. Phys. 15, 581-585 (2013).

54 54. M.J. Kreder, J. Alvarenga, P. Kim, and J. Aizenberg, Design of anti-icing surfaces: smooth, textured or slippery? Nat. Rev. Mater. 1, 15003 (2016).

55 55. E. Mitridis, T.M. Schutzius, A. Sicher, C.U. Hail, H. Eghlidi, and D. Poulikakos, Metasurfaces leveraging solar energy for icephobicity. ACS Nano 12, 7009-7017 (2018).

56 56. T. Loho, J. Leveneur, and J. Kennedy, Effects of surface topography and chemistry modifications of stainless steel through ion implantation on icephobicity. Procedia Manufacturing 30, 231-238 (2019).

57 57. S. Gao, W. Liu, and Z. Liu, Tuning nanostructured surfaces with hybrid wettability areas to enhance condensation. Nanoscale 11, 459-466 (2019).

58 58. P.C. Mahata and D.J. Alofs, Insoluble condensation nuclei: The effect of contact angle, surface roughness and adsorption. J. Atmos. Sci. 32, 116-122 (1975).

59 59. W. Xu, Z. Lan, B. Peng, R. Wen, and X. Ma, Heterogeneous nucleation capability of conical microstructures for water droplets. RSC Adv. 5, 812-818 (2015).

60 60. M. Nosonovsky and B. Bhushan, Biomimetic superhydrophobic surfaces: multiscale approach. Nano Lett. 7, 2633-2637 (2007).

61 61. N. Miljkovic, R. Enright, and E.N. Wang, Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano 6, 1776-1785 (2012).

62 62. K.K. Varanasi, M. Hsu, N. Bhate, W.S. Yang, and T. Deng, Spatial control in the heterogeneous nucleation of water. Appl. Phys. Lett. 95, 094101 (2009).

63 63. C.-W. Yao, J.L. Alvarado, C.P. Marsh, B.G. Jones, and M.K. Collins, Wetting behavior on hybrid surfaces with hydrophobic and hydrophilic properties. Appl. Surf. Sci. 290, 59-65 (2014).

64 64. Y. Hou, M. Yu, X. Chen, Z. Wang, and S. Yao, Recurrent filmwise and dropwise condensation on a beetle mimetic surface. ACS Nano 9, 71-81 (2014).

65 65. Y. Hou, M. Yu, X. Chen, Z. Wang, and S. Yao, Filmwise-to-dropwise condensation transition enabled by patterned high wetting contrast. J. Heat Transfer 137, 080907 (2015).

66 66. Y. Hou, Z. Wang, and S. Yao, Biomimetic surfaces for enhanced dropwise condensation heat transfer: mimic nature and transcend nature in: Bio-Inspired Surfaces and Applications, E.Y.K. Ng, (Ed.), pp. 185-228, World Scientific Publishing, Singapore (2016).

67 67. Y. Hou, M. Yu, Y. Shang, P. Zhou, R. Song, X. Xu, X. Chen, Z. Wang, and S. Yao, Suppressing ice nucleation of supercooled condensate with biphilic topography. Phys. Rev. Lett. 120, 075902 (2018).

68 68. Y. Hou, Y. Shang, M. Yu, C. Feng, H. Yu, and S. Yao, Tunable water harvesting surfaces consisting of biphilic nanoscale topography. ACS Nano 12, 11022-11030 (2018).

69 69. L. Mishchenko, M. Khan, J. Aizenberg, and B.D. Hatton, Spatial control of condensation and freezing on superhydrophobic surfaces with hydrophilic patches. Adv. Funct. Mater. 23, 4577-4584 (2013).

70 70. E. Ölçeroğlu and M. McCarthy, Self-organization of microscale condensate for delayed flooding of nanostructured superhydrophobic surfaces. ACS Appl. Mater. Interfaces 8, 5729-5736 (2016).

71 71. S. Choo, H.-J. Choi, and H. Lee, Water-collecting behavior of nanostructured surfaces with special wettability. Appl. Surf. Sci. 324, 563-568 (2015).

72 72. D. Ehre, E. Lavert, M. Lahav, and I. Lubomirsky, Water freezes differently on positively and negatively charged surfaces of pyroelectric materials. Science 327, 672-675 (2010).

73 73. P.M. Winkler, G. Steiner, A. Vrtala, H. Vehkamäki, M. Noppel, K.E.J. Lehtinen, G.P. Reischl, P.E. Wagner, and M. Kulmala, Heterogeneous nucleation experiments bridging the scale from molecular ion clusters to nanoparticles. Science 319, 1374-1377 (2008).

74 74. H. Qiu and W. Guo, Electromelting of confined monolayer ice. Phys. Rev. Lett. 110, 195701 (2013).

75 75. J.Y. Yan and G.N. Patey, Heterogeneous ice nucleation induced by electric fields. J. Phys. Chem. Lett. 2, 2555-2559 (2011).

76 76. Z. He, W.J. Xie, Z. Liu, G. Liu, Z. Wang, Y.Q. Gao, and J. Wang, Tuning ice nucleation with counterions on polyelectrolyte brush surfaces. Sci. Adv. 2, e1600345 (2016).

77 77. H. Yang, C. Ma, K. Li, K. Liu, M. Loznik, R. Teeuwen, J.C.M. van Hest, X. Zhou, A. Herrmann, and J. Wang, Tuning ice nucleation with supercharged polypeptides. Adv. Mater. 28, 5008-5012 (2016).

78 78. R. Peltier, M.A. Brimble, J.M. Wojnar, D.E. Williams, C.W. Evans, and A.L. DeVries, Synthesis and antifreeze activity of fish antifreeze glycoproteins and their analogues. Chem. Sci. 1, 538-551 (2010).

79 79. C.B. Marshall, G.L. Fletcher, and P.L. Davies, Hyperactive antifreeze protein in a fish. Nature 429, 153 (2004).

80 80. M. Bar Dolev, I. Braslavsky, and P.L. Davies, Ice-binding proteins and their function. Annu. Rev. Biochem. 85, 515-542 (2016).

81 81. C.I. Biggs, C. Stubbs, B. Graham, A.E.R. Fayter, M. Hasan, and M.I. Gibson, Mimicking the ice recrystallization activity of biological antifreezes. When is a new polymer “active”? Macromol. Biosci. 19, 1900082 (2019).

82 82. A. Kiselev, F. Bachmann, P. Pedevilla, S.J. Cox, A. Michaelides, D. Gerthsen, and T. Leisner, Active sites in heterogeneous ice nucleation—the example of K-rich feldspars. Science 355, 367-371 (2017).

83 83. A. Cacciuto, S. Auer, and D. Frenkel, Onset of heterogeneous crystal nucleation in colloidal suspensions. Nature 428, 404-406 (2004).

84 84. M. Matsumoto, S. Saito, and I. Ohmine, Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 416, 409-413 (2002).

85 85. A. Filipponi, A. Di Cicco, and E. Principi, Crystalline nucleation in under-cooled liquids: A Bayesian data-analysis approach for a nonhomogeneous Poisson process. Phys. Rev. E 86, 066701 (2012).

86 86. N. Miljkovic, R. Enright, and E.N. Wang, Modeling and optimization of superhydrophobic condensation. J. Heat Transfer 135, 111004 (2013).

87 87. M. Watkins, D. Pan, E.G. Wang, A. Michaelides, J. VandeVondele, and B. Slater, Large variation of vacancy formation energies in the surface of crystalline ice. Nat. Mater. 10, 794-798 (2011).

88 88. R.S. Smith and B.D. Kay, The existence of supercooled liquid water at 150 K. Nature 398, 788-791 (1999).

89 89. J. Wölk and R. Strey, Homogeneous nucleation of H2O and D2O in comparison: The isotope effect. J. Phys. Chem. B 105, 11683-11701 (2001).

90 90. B.N. Hale, Temperature dependence of homogeneous nucleation rates for water: Near equivalence of the empirical fit of Wölk and Strey, and the scaled nucleation model. J. Chem. Phys. 122, 204509 (2005).

91 91. S. Prestipino, A. Laio, and E. Tosatti, Systematic improvement of classical nucleation theory. Phys. Rev. Lett. 108, 225701 (2012).

92 92. L. Dufour and R. Defay, Thermodynamics of Clouds. Academic Press, New York and London (1963).

93 93. M. Sokuler, G.K. Auernhammer, M. Roth, C. Liu, E. Bonacurrso, and H.-J. Butt, The softer the better: fast condensation on soft surfaces. Langmuir 26, 1544-1547 (2010).

94 94. F. Eslami and J.A.W. Elliott, Thermodynamic investigation of the barrier for heterogeneous nucleation on a fluid surface in comparison with a rigid surface. J. Phys. Chem. B 115, 10646-10653 (2011).

95 95. T. Kajiya, F. Schellenberger, P. Papadopoulos, D. Vollmer, and H.-J. Butt, 3D imaging of water-drop condensation on hydrophobic and hydrophilic lubricant-impregnated surfaces. Sci. Rep. 6, 23687 (2016).

96 96. S. Kim, D. Kim, J. Kim, S. An, and W. Jhe, Direct evidence for curvature-dependent surface tension in capillary condensation: Kelvin equation at molecular scale. Phys. Rev. X 8, 041046 (2018).

97 97. F. Pellerey, M. Shaked, and J. Zinn, Nonhomogeneous Poisson processes and logconcavity. Probab. Eng. Inform. Sc. 14, 353-373 (2000).

98 98. T.L. Liu and C.-J.C. Kim, Turning a surface superrepellent even to completely wetting liquids. Science 346, 1096-1100 (2014).

99 99. S. Engemann, H. Reichert, H. Dosch, J. Bilgram, V. Honkimäki, and A. Snigirev, Interfacial melting of ice in contact with SiO2. Phys. Rev. Lett. 92, 205701 (2004).

100 100. M. Mezger, S. Schöder, H. Reichert, H. Schröder, J. Okasinski, V. Honkimäki, J. Ralston, J. Bilgram, R. Roth, and H. Dosch, Water and ice in contact with octadecyl-trichlorosilane functionalized surfaces: A high resolution x-ray reflectivity study. J. Chem. Phys. 128, 244705 (2008).

101 101. G. Malenkov, Liquid water and ices: understanding the structure and physical properties. J. Phys.: Condens. Matter 21, 283101 (2009).

102 102. E.B. Moore, E. de la Llave, K. Welke, D.A. Scherlis, and V. Molinero, Freezing, melting and structure of ice in a hydrophilic nanopore. Phys. Chem. Chem. Phys. 12, 4124-4134 (2010).

103 103. E. González Solveyra, E. de la Llave, D.A. Scherlis, and V. Molinero, Melting and crystallization of ice in partially filled nanopores. J. Phys. Chem. B 115, 14196-14204 (2011).

104 104. H. Li, M. Bier, J. Mars, H. Weiss, A.-C. Dippel, O. Gutowski, V. Honkimäki, and M. Mezger, Interfacial premelting of ice in nano composite materials. Phys. Chem. Chem. Phys. 21, 3734-3741 (2019).

105 105. R.R. Vanfleet and J.M. Mochel, Thermodynamics of melting and freezing in small particles. Surf Sci. 341, 40-50 (1995).

106 106. Y. Suzuki, H. Duran, M. Steinhart, M. Kappl, H.-J. Butt, and G. Floudas, Homogeneous nucleation of predominantly cubic ice confined in nanoporous alumina. Nano Lett. 15, 1987-1992 (2015).

107 107. Y. Suzuki, M. Steinhart, H.-J. Butt, and G. Floudas, Kinetics of ice nucleation confined in nanoporous alumina. J. Phys. Chem. B 119, 11960-11966 (2015).

108 108. Y. Yao, P. Ruckdeschel, R. Graf, H.-J. Butt, M. Retsch, and G. Floudas, Homogeneous nucleation of ice confined in hollow silica spheres. J. Phys. Chem. B 121, 306-313 (2017).

109 109. L. Lupi, A. Hudait, and V. Molinero, Heterogeneous nucleation of ice on carbon surfaces. J. Am. Chem. Soc. 136, 3156-3164 (2014).

110 110. K. Koga, G.T. Gao, H. Tanaka, and X.C. Zeng, Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412, 802-805 (2001).

111 111. M. Raju, A. van Duin, and M. Ihme, Phase transitions of ordered ice in graphene nanocapillaries and carbon nanotubes. Sci. Rep. 8, 3851 (2018).

112 112. S.J. Cox, Z. Raza, S.M. Kathmann, B. Slater, and A. Michaelides, The microscopic features of heterogeneous ice nucleation may affect the macroscopic morphology of atmospheric ice crystals. Faraday Discuss. 167, 389-403 (2013).

Ice Adhesion

Подняться наверх