Читать книгу Indoor Photovoltaics - Группа авторов - Страница 46

References

Оглавление

1 1. Hyatt, G.P., Single chip integrated circuit computer architecture. US Patent 4942516A, 28, Dec. 1970.

2 2. Faggin, F., Hoff, M., Mazor, S., Memory system for a multi chip digital computer, vol. 22, Intel Corp, US Patent 3821715A, Jan. 1973.

3 3. Conti, J.A., Electronic postage weighing scale, vol. 10, Pitney-Bowes Inc, US Patent 4084242A, Nov. 1976.

4 4. Roen, S.A., Solar powered portable calculator, vol. 03, Litton Business Systems Inc, US Patent 4017725A, Jan. 1975.

5 5. Hanson, S. et al., IEEE J. Solid-State Circuits., 44, 1145–1155, 2009.

6 6. Atluri, V. et al., The trillion-dollar opportunity for the industrial sector. McKinsey Digital, November 2018. Article https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/the-trillion-dollar-opportunity-for-the-industrial-sector, accessed 2020-01-24.

7 7. IEC 60904-3:2019, Photovoltaic devices - Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data, 2019.

8 8. Randall, J.F. and Jacot, J., Is AM1.5 applicable in practice? Modelling eight photovoltaic materials with respect to light intensity and two spectra. Ren. Energy, 28, 12, 1851–1864, 2003.

9 9. Hirata, Y. et al., Variation of output with environmental factors, in: Photovoltaic Modeling Handbook, M. Freunek Müller (Ed.), Wiley Scrivener, Hoboken NJ, USA, 2018.

10 10. Freunek, M. et al., Maximum efficiencies of indoor photovoltaic devices. IEE J. Photovol., 3, 1, 59–64, 2013.

11 11. Roth, W., Photovoltaische Energieversorgung für Geräte im kleinen und mittleren Leistungsbereich, report, Fraunhofer-Institut für Solare Energiesysteme, Freiburg, Germany, 1991.

12 12. Müller, M. et al., Characterization of indoor photovoltaic devices and light, in: Proceedings of the 34th IEEE Photovoltaic Specialists Conference, pp. 738– 743, Philadelphia, USA, 2009.

13 13. Müller, M. et al., Simulations and measurements for indoor photovoltaic devices, Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 2009.

14 14. Müller, M., Energieautarke Mikrosysteme am Beispiel von Photovoltaik in Gebäuden, PhD Thesis, Der Andere Verlag, Osnabrück, Germany, 2010.

15 15. Apostolou, G. et al., Spectral irradiance measurements in a room fit for indoor pv products, Proceedings of the 27th EUPVSEC, pp. 4240–4244, Frankfurt, Germany 2012.

16 16. Queisser, H.J. and Shockley, W., Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys., 32, 510–519, 1961.

17 17. Trupke, T. and Würfel, P., Fundamental limits of solar energy conversion, in: Photovoltaic Modeling Handbook, M. Freunek Müller (Ed.), Wiley Scrivener, Hoboken NJ, USA, 2018.

18 18. Hovel, H.J., Solar cells, in: Semiconductors and Semimetals, vol. 11, R.K. Willardson and A.C. Beer (Eds.), Academic Press, New York, USA, 1975.

19 19. Sze, S.M. and Lee, M.-K., Semiconductor Devices: Physics and Technology, 3rd Ed., Wiley, New York, USA, 2012.

20 20. Gemmer, C. and Schubert, M.B., Solar cell performance under different illumination conditions. MRS Online Proc., 664, 2001.

21 21. Shah, A.V. et al., Basic efficiency limits, recent experimental results and novel light-trapping schemes in a-Si:H, μc-Si:H and ‘micromorph tandem’ solar cells. J. Non-Cryst. Solids, 338–340, 639–645, 2004.

22 22. Thompson, I.R., Modelling of organic photovoltaics, in: Photovoltaic Modeling Handbook, M. Freunek Müller (Ed.), Wiley Scrivener, Hoboken NJ, USA, 2018.

23 23. Freunek Müller, M. (Ed.), Photovoltaic Modeling Handbook, Wiley Scrivener, Hoboken NJ, USA, 2018.

24 24. Gemmer, C.E.M., Analytische und numerische Untersuchungen von Solarzellen unter wechselnden Beleuchtungsbedingungen, PhD Thesis, Der Andere Verlag, Osnabrueck, Germany, 2003.

25 25. Bahrami-Yekta, V. and Tiedje, T., Limiting efficiency of indoor silicon photovoltaic devices. Opt. Express, 26, 28238–28248, 2018.

26 26. NREL, Reference Air Mass 1.5 Spectra, https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html, accessed 28-01-2020.

27 27. Green, M.A., Solar Cells: Operating Principles, Technology and System Applications, Prentice-Hall, Englewood Cliffs, N.J., USA, 1982.

28 28. https://www.enlitechnology.com/indoor-solar-cell-testing-room-light-simulator.html, accessed 28-01-2020.

29 29. Reich, N. et al., Weak light performance and spectral response of different solar cell types, in: 20th European Photovoltaic Solar Energy Conference and Exhibition, vol. 10, pp. 2120–2123, 2005.

30 30. Apostolou, G. et al., Comparison of the indoor performance of 12 commercial PV products by a simple model. Energy Sci. Eng., 4, 69–85, 2016.

31 31. https://www.ikea.com/jp/en/catalog/products/00340306/, accessed 28-01-2020.

32 32. https://www.ixys.com/ProductPortfolio/GreenEnergy.aspx, accessed 28-01-2020.

33 33. https://www.easyfit-controls.com/de/portfolio/people-activity-counter-epac/, accessed 28-01-2020.

34 34. https://www.ti.com/lit/ug/tidu235a/tidu235a.pdf, accessed 28-01-2020.

35 35. http://ixapps.ixys.com/DataSheet/SLMD121H04L_Nov16.pdf, accessed 28-01-2020.

36 36. https://littlesun.com/product/little-sun-charge/, accessed 28-01-2020.

37 37. https://www.ikea.com/au/en/catalog/products/70422030/, accessed 28-01-2020.

38 38. Staebler, D.L. and Wronski, C.R., Reversible conductivity changes in discharge-produced amorphous Si. Appl. Phys. Lett., 31, 4, 292–294, 1977.

39 39. Freunek Müller, M. and Reindl, L.M., Wirkungsgrade, Charakterisierung und Alterung indoorphotovoltaischer Wandler, in: Mikrosystemtechnik 2013, Von Bauelementen zu Systemen, Aachen, Germany, 2013, https://www.vde-verlag.de/proceedings-de/453555132.html.

40 40. Reinders, A. and Apostolou, G., Product integrated photovoltaics, in: Photovoltaic Solar Energy: From Fundamentals to Applications, A. Reinders (Eds.), Wiley, New York, USA, 2017.

Indoor Photovoltaics

Подняться наверх