Читать книгу Nanobiotechnology in Diagnosis, Drug Delivery and Treatment - Группа авторов - Страница 68

References

Оглавление

1 Abdelghany, S.M., Schmid, D., Deacon, J. et al. (2013). Enhanced antitumor activity of the photosensitizer meso‐tetra(N‐methyl‐ 4‐pyridyl) porphine tetra tosylate through encapsulation in antibody‐targeted chitosan/alginate nanoparticles. Biomacromolecules 14: 302–310.

2 Agarwal, S. and Mayer, L. (2013). Diagnosis and treatment of gastrointestinal disorders in patients with primary immunodeficiency. Clinical Gastroenterology and Hepatology 11: 1050–1063.

3 Aggarwal, P., Hall, J.B., McLeland, C.B. et al. (2009). Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Advanced Drug Delivery Reviews 61: 428–437.

4 Ahmad, Z., Shah, A., Siddiq, M., and Kraatz, H.B. (2014). Polymeric micelles as drug delivery vehicles. RSC Advances 4: 17028–17038.

5  Al‐Jumaili, A., Alancherry, S., Bazaka, K., and Jacob, M.V. (2017). Review on the antimicrobial properties of carbon nanostructures. Materials 10 (1066): 1–26.

6 Allen, T.M. and Cullis, P.R. (2013). Liposomal drug delivery systems: from concept to clinical applications. Advanced Drug Delivery Reviews 65: 36–48.

7 Álvarez‐Paino, M., Muñoz‐Bonilla, A., and Fernández‐García, M. (2017). Antimicrobial polymers in the nano‐world. Nanomaterials 7: 48.

8 Andreadou, M., Liandris, E., Gazouli, M. et al. (2016). Detection of Leishmania‐specific DNA and surface antigens using a combination of functionalized magnetic beads and cadmium selenite quantum dots. Journal of Microbiological Methods 123: 62–67.

9 Angsantikul, P., Thamphiwatana, S., Zhang, Q. et al. (2018). Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against Helicobacter pylori infection. Advanced Therapeutics 1: 1–9.

10 Arif, M., Dong, Q.J., Raja, M.A. et al. (2018). Development of novel pH‐sensitive thiolated chitosan/PMLA nanoparticles for amoxicillin delivery to treat Helicobacter pylori. Materials Science & Engineering, C: Materials for Biological Applications 83: 17–24.

11 Arunraj, T.R., Sanoj, R.N., Kumar, A.N., and Jayakumar, R. (2014). Bio‐responsive chitin‐poly(L‐lactic acid) composite nanogels for liver cancer. Colloids and Surfaces B: Biointerfaces 113: 394–402.

12 Ashwanikumar, N., Kumar, N.A., Nair, S.A., and Kumar, G.V. (2012). Methacrylic‐based nanogels for the pH‐sensitive delivery of 5‐fluorouracil in the colon. International Journal of Nanomedicine 7: 5769–5779.

13 Barenholz, Y. (2012). Doxil®‐the first FDA‐approved nano‐drug: lessons learned. Journal of Controlled Release 160: 117–134.

14 Bayford, R., Rademacher, T., Roitt, I., and Wang, S.X. (2017). Emerging applications of nanotechnology for diagnosis and therapy of disease: a review. Physiological Measurement 38: R183–R203.

15 Bouwmeester, H., van der Zande, M., and Jepson, M.A. (2018). Effects of food‐borne nanomaterials on gastrointestinal tissues and microbiota. Nanomedicine and Nanobiotechnology 10: 1–12.

16 Brennan, F.R., Shaw, L., Wing, M.G., and Robinson, C. (2004). Preclinical safety testing of biotechnology‐derived pharmaceuticals: understanding the issues and addressing the challenges. Molecular Biotechnology 27: 59–74.

17 Celli, J.P., Turner, B.S., Afdhal, N.H. et al. (2009). Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. Proceedings of the National Academy of Science 106: 1421–1426.

18 Chacko, R.T., Ventura, J., Zhuang, J., and Thayumanavan, S. (2012). Polymer nanogels: a versatile nanoscopic drug delivery platform. Advanced Drug Delivery Reviews 64: 836–851.

19 Cho, M., Cho, W.S., Choi, M. et al. (2009). The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicology Letters 189: 177–183.

20 College, N.R., Walker, B.R., and Ralston, S.H. (2010). Davidson's Principles and Practice of Medicine, 21e. Edinburgh: Churchill Livingstone/Elsevier.

21 Collnot, E.M., Ali, H., and Lehr, C.M. (2012). Nano and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. Journal of Controlled Release 161: 235–246.

22 Damascelli, B., Cantù, G., Mattavelli, F. et al. (2001). Intraarterial chemotherapy with polyoxyethylated castor oil free paclitaxel, incorporated in albumin nanoparticles (ABI‐007): phase I study of patients with squamous cell carcinoma of the head and neck and anal canal: preliminary evidence of clinical activity. Cancer 92: 2592–2602.

23 Dong, Z., Cui, M.Y., and Peng, Z. (2015). Nanoparticles for colorectal cancer‐targeted drug delivery and MR imaging: current situation and perspectives. Current Cancer Drug Targets 30: 536–550.

24 Ekladious, I., Liu, R., Varongchayakul, N. et al. (2018). Reinforcement of polymeric nanoassemblies for ultra‐high drug loadings, modulation of stiffness and release kinetics, and sustained therapeutic efficacy. Nanoscale 10: 8360–8366.

25  Ekladious, I., Colson, Y.L., and Grinstaff, M.W. (2019). Polymer–drug conjugate therapeutics: advances, insights and prospects. Nature Reviews Drug Discovery 18: 273–294.

26 Fay, F., McLaughlin, K.M., Small, D.M. et al. (2011). Conatumumab (AMG 655) coated nanoparticles for targeted proapoptotic drug delivery. Biomaterials 32: 8645–8653.

27 Fortina, P., Kricka, L.J., Graves, D.J. et al. (2007). Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends in Biotechnology 25: 145–152.

28 Gao, W., Thamphiwatana, S., Angsantikul, P., and Zhang, L. (2014). Nanoparticle approaches against bacterial infections. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 6: 532–547.

29 Gatoo, M.A., Naseem, S., Arfat, M.Y. et al. (2014). Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Research International 2014: 1–8.

30 Gaur, A., Midha, A., and Bhatia, A.L. (2008). Significance of nanotechnology in medical sciences. Asian Journal of Pharmaceutics 2008: 80–85.

31 Gholami, Y.H. and Engel, A. (2018). Theranostic nanoplatforms for treatment and diagnosis of rectal and colon cancer: a brief review. Mini‐invasive Surgery 2 (44): 1–9.

32 Giau, V.V., An, S.S.A., and Hulme, J. (2019). Recent advances in the treatment of pathogenic infections using antibiotics and nano‐drug delivery vehicles. Drug Design, Development and Therapy 13: 327–343.

33 Greco, F. and Vicent, M.J. (2009). Combination therapy: opportunities and challenges for polymer‐drug conjugates as anticancer nanomedicines. Advanced Drug Delivery Reviews 61: 1203–1213.

34 Greish, K. (2007). Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. Journal of Drug Targeting 15: 457–464.

35 Gryparis, E.C., Hatziapostolou, M., Papadimitriou, E., and Avgoustakis, K. (2007). Anticancer activity of cisplatin‐loaded PLGA‐mPEG nanoparticles on LNCaP prostate cancer cells. European Journal of Pharmaceutics and Biopharmaceutics 67: 1–8.

36 Gulbake, A., Jain, A., Jain, A. et al. (2016). Insight to drug delivery aspects for colorectal cancer. World Journal of Gastroenterology 22: 582–599.

37 He, H., Lu, Y., Qia, J. et al. (2019). Adapting liposomes for oral drug delivery. Acta Pharmaceutica Sinica B 9: 36–48.

38 Hoet, P., Bruske‐Hohlfeld, I., and Salata, O. (2004). Nanoparticles‐known and unknown health risks. Journal of Nanobiotechnology 2: 1–15.

39 Hong, R.L., Huang, C.J., Tseng, Y.L. et al. (1999). Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C‐26 tumor‐bearing mice: is surface coating with polyethylene glycol beneficial? Clinical Cancer Research 5: 3645–3652.

40 Howard, M.D., Jay, M., Dziubla, T.D., and Lu, X. (2008). PEGylation of nanocarrier drug delivery systems: state of the art. Journal of Biomedical Nanotechnology 4: 133–148.

41 Huynh, N.T., Passirani, C., Saulnier, P., and Benoit, J.P. (2009). Lipid nanocapsules: a new platform for nanomedicine. International Journal of Pharmaceutics 379: 201–209.

42 Jeevanandam, J., Barhoum, A., Chan, J.S. et al. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology 9: 1050–1074.

43 Jha, A.K., Goenka, M.K., Nijhawan, S. et al. (2012). Nanotechnology in gastrointestinal endoscopy: a primer. Journal of Digestive Endoscopy 3: S77–S80.

44 Kaasgaard, T., Mouritsen, O.G., and Jørgensen, K. (2001). Screening effect of PEG on avidin binding to liposome surface receptors. International Journal of Pharmaceutics 214: 63–65.

45 Keum, N. and Giovannucci, E. (2019). Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nature Reviews Gastroenterology & Hepatology https://doi.org/10.1038/s41575‐019‐0189‐8.

46  Kong, S.H., Noh, Y.W., Suh, Y.S. et al. (2015). Evaluation of the novel near‐infrared fluorescence tracers pullulan polymer nanogel and indocyanine green/gamma‐glutamic acid complex for sentinel lymph node navigation surgery in large animal models. Gastric Cancer 18: 55–64.

47 Kovacevic, A., Savic, S., Vuleta, G. et al. (2011). Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure. International Journal of Pharmaceutics 406: 163–172.

48 Kumar, P.S., Datta, M.S., Kumar, D.M. et al. (2016). Potential application of dendrimers in drug delivery: a concise review and update. Journal of Drug Delivery and Therapeutics 6: 71–88.

49 Lacy, B.E., Mearin, F., Chang, L. et al. (2016). Bowel disorders. Gastroenterology 150: 1393–1407.

50 Laroui, H., Wilson, D.S., Dalmasso, G. et al. (2011). Nanomedicine in GI. American Journal of Physiology ‐ Gastrointestinal and Liver Physiology 300: G371–G383.

51 Laroui, H., Rakhya, P., Xiao, B. et al. (2013). Nanotechnology in diagnostics and therapeutics for gastrointestinal disorders. Digestive and Liver Disease 45: 995–1002.

52 Lee, L.J. (2006). Polymer nano‐engineering for biomedical applications. Annals of Biomedical Engineering 34: 75–88.

53 Lopes, D., Nunes, C., Martins, M.C. et al. (2014). Eradication of Helicobacter pylori: past, present and future. Journal of Controlled Release 189: 169–186.

54 Lopes, D., Nunes, C., Martins, M.C.L. et al. (2015). Targeting strategies for the treatment of Helicobacter pylori infections. In: Nano Based Drug Delivery (ed. J. Naik), 339–366. Zagreb, Croatia: IAPC Publishing.

55 Lopes‐de‐Campos, D., Pinto, R.M., Lima, S.A. et al. (2019). Delivering amoxicillin at the infection site – a rational design through lipid nanoparticles. International Journal of Nanomedicine 14: 2781–2795.

56 Lovrić, J., Bazzi, H.S., Cuie, Y. et al. (2005). Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. Journal of Molecular Medicine 83: 377–385.

57 Lyberopoulou, A., Efstathopoulos, E.P., and Gazouli, M. (2016). Nanotechnology‐based rapid diagnostic tests. In: Proof and Concepts in Rapid Diagnostic Tests and Technologies (ed. K.S. Saxena), 89–105. London: IntechOpen.

58 Maeda, H., Wu, J., Sawa, T. et al. (2000). Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release 65: 271–284.

59 Martinez‐Carmona, M., Gunko, Y.K., and Vallet‐Regi, M. (2018). Mesoporous silica materials as drug delivery: the nightmare of bacterial infection. Pharmaceutics 10 (279): 1–29.

60 Matea, C.T., Mocan, T., Tabaran, F. et al. (2017). Quantum dots in imaging, drug delivery and sensor applications. International Journal of Nanomedicine 12: 5421–5431.

61 Medina, C., Santos‐Martinez, M.J., Radomski, A. et al. (2007). Nanoparticles: pharmacological and toxicological significance. British Journal of Pharmacology 150: 552–558.

62 Mintzer, M.A., Dane, E.L., O'Toole, G.A., and Grinstaff, M.W. (2012). Exploiting dendrimer multivalency to combat emerging and re‐emerging infectious diseases. Molecular Pharmaceutics 9: 342–354.

63 Mishra, S., Webster, P., and Davis, M.E. (2004). PEGylation significantly affects cellular uptake and intracellular trafficking of non‐viral gene delivery particles. European Journal of Cell Biology 83: 97–111.

64 Owens, D.E. and Peppas, N.A. (2006). Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics 307: 93–102.

65 Peters, R., Kramer, E., Oomen, A.G. et al. (2012). Presence of nano‐sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano 6: 2441–2451.

66 Podolsky, D.K. (2002). Inflammatory bowel disease. The New England Journal of Medicine 347: 417–429.

67  Powers, K.W., Palazuelos, M., Moudgil, B.M., and Roberts, S.M. (2007). Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1: 42–51.

68 Riasat, R., Guangjun, N., Riasat, N. et al. (2016). Effects of nanoparticles on gastrointestinal disorders and therapy. Journal of Clinical Toxicology 6 (313): 1–10.

69 Romberg, B., Hennink, W.E., and Storm, G. (2008). Sheddable coatings for long‐circulating nanoparticles. Pharmaceutical Research 25: 55–71.

70 Seabra, C.L., Nunes, C., and Gomez‐Lazaro, M. (2017). Docosahexaenoic acid loaded lipid nanoparticles with bactericidal activity against Helicobacter pylori. International Journal of Pharmaceutics 519: 128–137.

71 Senanayake, T.H., Warren, G., Wei, X., and Vinogradov, S.V. (2013). Application of activated nucleoside analogs for the treatment of drug‐resistant tumors by oral delivery of nanogel‐drug conjugates. Journal of Controlled Release 167: 200–209.

72 Seydack, M. (2004). Nanoparticle labels in immunosensing using optical detection methods. Biosensors and Bioelectronics 20: 2454–2469.

73 Stang, J., Haynes, M., Carson, P., and Moghaddam, M. (2012). A preclinical system prototype for focused microwave thermal therapy of the breast. IEEE Transactions on Biomedical Engineering 59: 2431–2438.

74 Szentkuti, L. (1997). Light microscopical observations on luminally administered dyes, dextrans, nanospheres and microspheres in the pre‐epithelial mucus gel layer of the rat distal colon. Journal of Controlled Release 46: 233–242.

75 Thamphiwatana, S., Fu, V., Zhu, J. et al. (2013). Nanoparticle‐stabilized liposomes for pH‐responsive gastric drug delivery. Langmuir 29: 12228–12233.

76 Tiernan, J.P., Ingram, N., Marston, G. et al. (2015). CEA‐targeted nanoparticles allow specific in vivo fluorescent imaging of colorectal cancer models. Nanomedicine (London, England) 10: 1223–1231.

77 Tokajuk, G., Niemirowicz, K., Deptuła, P. et al. (2017). Use of magnetic nanoparticles as a drug delivery system to improve chlorhexidine antimicrobial activity. International Journal of Nanomedicine 12: 7833–7846.

78 Torchilin, V.P. (2007). Targeted pharmaceutical nanocarriers for cancer therapy and imaging. The AAPS Journal 9: E128–E147.

79 Umamaheshwari, R.B. and Jain, N.K. (2003). Receptor mediated targeting of lectin conjugated gliadin nanoparticles in the treatment of Helicobacter pylori. Journal of Drug Targeting 11: 415–424.

80 Vigor, K.L., Kyrtatos, P.G., Minogue, S. et al. (2010). Nanoparticles functionalized with recombinant single chain Fv antibody fragments (scFv) for the magnetic resonance imaging of cancer cells. Biomaterials 31: 1307–1315.

81 Viswanath, B., Kim, S., and Lee, K. (2016). Recent insights into nanotechnology development for detection and treatment of colorectal cancer. International Journal of Nanomedicine 11: 2491–2504.

82 Walczak, A.P., Fokkink, R., Peters, R. et al. (2013). Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model. Nanotoxicology 7: 1198–1210.

83 Walczak, A.P., Kramer, E., Hendriksen, P.J. et al. (2015). In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co‐culture model. Nanotoxicology 9: 886–894.

84 Weinberg, W.C., Frazier‐Jessen, M.R., Wu, W.J. et al. (2005). Development and regulation of monoclonal antibody products: challenges and opportunities. Cancer Metastasis Reviews 24: 569–584.

85 Weissleder, R., Kelly, K., Sun, E.Y. et al. (2005). Cell‐specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnology 23: 1418–1423.

86  Westmeier, D., Posselt, G., Hahlbrock, A. et al. (2018). Nanoparticle binding attenuates the pathobiology of gastric cancer‐associated Helicobacter pylori. Nanoscale 10: 1453–1463.

87 Xiao, B. and Merlin, D. (2012). Oral colon‐specific therapeutic approaches toward treatment of inflammatory bowel disease. Expert Opinion in Drug Delivery 9: 1393–1407.

88 Zhu, X. and Gao, T. (2019). Spectrometry. In: Nano‐Inspired Biosensors for Protein Assay with Clinical Applications (ed. G. Li), 237–264. Amsterdam, Netherlands: Elsevier.

89 Zottel, A., Videtič, A., and Jovcevska, A. (2019). Nanotechnology meets oncology: nanomaterials in brain cancer research, diagnosis and therapy. Materials 12: 1–28.

Nanobiotechnology in Diagnosis, Drug Delivery and Treatment

Подняться наверх