Читать книгу Position, Navigation, and Timing Technologies in the 21st Century - Группа авторов - Страница 36
References
Оглавление1 1 Kalman, R.E. (1960) A new approach to linear filtering and prediction problems. Transactions of the ASME–Journal of Basic Engineering, 82 (Series D), 35–45.
2 2 Maybeck, P.S. (1979) Stochastic Models, Estimation, and Control, Vol. I, Academic Press, Inc., Orlando, Florida 32887.
3 3 Maybeck, P.S. (1979) Stochastic Models, Estimation, and Control, Vol II, Academic Press, Inc., Orlando, Florida 32887.
4 4 Gordon, N.J., Salmond, D.J., and Smith, A.F. (1993) Novel approach to nonlinear/non‐Gaussian Bayesian state estimation, in IEE Proceedings F‐Radar and Signal Processing, vol. 140, IET, vol. 140, pp. 107–113.
5 5 Doucet, A., De Freitas, N., and Gordon, N. (2001) Sequential Monte Carlo Methods in Practice. Series Statistics for Engineering and Information Science.
6 6 Ristic, B., Arulampalam, S., and Gordon, N. (2004) Beyond the Kalman Filter: Particle Filters for Tracking Applications, Artech House.
7 7 Sheldon, S. and Maybeck, P. (1990) An optimizing design strategy for multiple model adaptive estimation and control, in Decision and Control, 1990, Proceedings of the 29th IEEE Conference on, pp. 3522–3527, Vol. 6.
8 8 Bar‐Shalom, Y., Li, X.R., and Kirubarajan, T. (2004) Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software, John Wiley & Sons.
9 9 Doucet, A., de Freitas, N., Murphy, K., and Russell, S. (2000) Rao‐Blackwellised particle filtering for dynamic Bayesian networks, in Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc., San Francisco, California, UAI’00, pp. 176–183. URL http://dl.acm.org/citation.cfm?id=2073946.2073968.
10 10 Mustiere, F., Bolic, M., and Bouchard, M. (2006) Rao‐Blackwellised particle filters: Examples of applications, in Electrical and Computer Engineering, 2006. CCECE ‘06. Canadian Conference on, pp. 1196–1200.
11 11 Papoulis, A. and Pillai, S.U. (2002) Probability, Random Variables and Stochastic Processes, McGraw‐Hill, New York.