Читать книгу Coastal Ecosystems in Transition - Группа авторов - Страница 40
REFERENCES
Оглавление1 Alcamo, J., Flörke, M., & Märker, M. (2007). Future long‐term changes in global water resources driven by socio‐economic and climatic changes. Hydrological Sciences Journal, 52(2), 247–275. https://doi:10.1623/hysj.52.2.247
2 Alvisi, F., & Cozzi, S. (2016). Seasonal dynamics and long‐term trend of hypoxia in the coastal zone of Emilia Romagna (NW Adriatic Sea, Italy). Science of the Total Environment, 541, 1448–1462. https://doi:10.1016/j.scitotenv.2015.10.011
3 Ator, S.W., Brakebill, J.W., & Blomquist, J.D. (2011). Sources, fate, and transport of nitrogen and phosphorus in the Chesapeake Bay watershed: An empirical model (Scientific Investigations Report 2011‐5167, 27 pp.). Reston, VA: US Geological Survey.
4 Bachman, L.J., Lindsey, B., Brakebill, J., & Powars, D.S. (1998). Ground‐water discharge and base‐flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic coast (Water‐Resources Investigations Report 98‐4059, 71 pp.). Baltimore, MD: US Geological Survey.
5 Basu, N.B., Destouni, G., Jawitz, J.W., Thompson, S.E., Loukinova, N.V., Darracq, A., et al. (2010). Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity. Geophysical Research Letters, 37(23), L23404. https://doi:10.1029/2010gl045168
6 Bloschl, G., Hall, J., Parajka, J., Perdigao, R.A.P., Merz, B., Arheimer, B., et al. (2017). Changing climate shifts timing of European floods. Science, 357(6351), 588–590. https://doi:10.1126/science.aan2506
7 Boesch, D.F., Brinsfield, R.B., & Magnien, R.E. (2001). Chesapeake Bay eutrophication: Scientific understanding, ecosystem restoration, and challenges for agriculture. Journal of Environmental Quality, 30(2), 303–320. https://www.ncbi.nlm.nih.gov/pubmed/11285890
8 Bortone, G. (2014). Il “Piano stralcio di lotta alla Eutrofizzazione” dell'Autorità del Po. sua adozione e applicazione. In A. Rinaldi (Ed.), Fioriture algali in Adriatico. Il bacino padano tra sviluppo e scienza (pp. 67–76). Imola: Editrice La Mandragora.
9 Boyer, E.W., & Howarth, R.W. (2008). Nitrogen fluxes from rivers to the coastal oceans. In D.G. Capone, D.A. Bronk, M.R. Mulholland, E.J. Carpenter (Eds.), Nitrogen in the marine environment (pp. 1565–1587). Amsterdam: Elsevier.
10 Boynton, W.R., Hagy, J.D., Cornwell, J.C., Kemp, W.M., Greene, S.M., Owens, M.S., et al. (2008). Nutrient budgets and management actions in the Patuxent River Estuary, Maryland. Estuaries and Coasts, 31(4), 623–651. https://doi:10.1007/s12237‐008‐9052‐9
11 Breitburg, D., Levin, L.A., Oschlies, A., Gregoire, M., Chavez, F.P., Conley, D.J., Garcon, V., et al. (2018). Declining oxygen in the global ocean and coastal waters. Science, 359(6371). https://doi:10.1126/science.aam7240
12 Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N., & Smith, V.H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3), 559–568. https://doi:10.1890/1051‐0761(1998)008[0559:Nposww]2.0.Co;2
13 Chanat, J.G., Moyer, D.L. Blomquist, J.D., Hyer, K.E., & Langland, M.J. (2016). Application of a weighted regression model for reporting nutrient and sediment concentrations, fluxes, and trends in concentration and flux for the Chesapeake Bay Nontidal Water‐Quality Monitoring Network, results through water year 2012 (Scientific Investigations Report 2015‐5133, 76 pp.). Reston, VA: US Geological Survey.
14 Charlton, M.B., Bowes, M.J., Hutchins, M.G., Orr, H.G., Soley, R., & Davison, P. (2018). Mapping eutrophication risk from climate change: Future phosphorus concentrations in English rivers. Science of the Total Environment, 613–614, 1510–1526. https://doi:10.1016/j.scitotenv.2017.07.218.
15 Chesapeake Bay Program (2014). Chesapeake Bay Watershed Agreement. https://www.chesapeakebay.net/what/what_guides_us/watershed_agreement
16 Chesapeake Executive Council (1988). Baywide nutrient reduction strategy: An agreement commitment report. Annapolis, MD.
17 Cirmo, C.P., & McDonnell, J.J. (1997). Linking the hydrologic and biogeochemical controls of nitrogen transport in near‐stream zones of temperate‐forested catchments: A review. Journal of Hydrology, 199(1–2), 88–120. https://doi:10.1016/s0022‐1694(96)03286‐6
18 Cloern, J.E. (2001). Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210, 223–253. https://doi:10.3354/meps210223
19 Cozzi, S., Falconi, C., Comici, C., Čermelj, B., Kovac, N., Turk, V., & Giani, M. (2012). Recent evolution of river discharges in the Gulf of Trieste and their potential response to climate changes and anthropogenic pressure. Estuarine, Coastal and Shelf Science, 115, 14–24. https://doi:10.1016/j.ecss.2012.03.005
20 Cozzi, S., & Giani, M. (2011). River water and nutrient discharges in the Northern Adriatic Sea: Current importance and long term changes. Continental Shelf Research, 31(18), 1881–1893. https://doi:10.1016/j.csr.2011.08.010
21 Cozzi, S., Ibáñez, C., Lazar, L., Raimbault, P., & Giani, M. (2019). Flow regime and nutrient‐loading trends from the largest south European watersheds: Implications for the productivity of Mediterranean and Black Sea’s coastal areas. Water, 11(1), 1. https://doi:10.3390/w11010001
22 Cozzi, S., Mistaro, A., Sparnocchia, S., Colugnati, L., Bajt, O., & Toniatti, L. (2014). Anthropogenic loads and biogeochemical role of urea in the Gulf of Trieste. Science of the Total Environment, 493, 271–281. https://doi:10.1016/j.scitotenv.2014.05.148
23 Degobbis, D. (1989). Increased eutrophication of the northern Adriatic sea. Marine Pollution Bulletin, 20(9), 452–457. https://doi:10.1016/0025‐326x(89)90066‐0
24 Diaz, R.J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926–929. https://doi:10.1126/science.1156401
25 Djakovac, T., Degobbis, D., Supić, N., & R. Precali (2012). Marked reduction of eutrophication pressure in the northeastern Adriatic in the period 2000–2009. Estuarine, Coastal and Shelf Science, 115, 25–32. https://doi:10.1016/j.ecss.2012.03.029
26 Eshleman, K.N., Sabo, R.D., & Kline, K.M. (2013). Surface water quality is improving due to declining atmospheric N deposition. Environmental Science and Technology, 47(21), 12193–12200. https://doi:10.1021/es4028748
27 Focazio, M.J., Plummer, L.N., Bohlke, J.K., Busenberg, E., Bachman, L.J., & Powars, D.S. (1997). Preliminary estimates of residence times and apparent ages of ground water in the Chesapeake Bay watershed, and water‐quality data from a survey of springs (Water‐Resources Investigations Report 97‐4225, 75 pp.). Richmond, VA: US Geological Survey.
28 Forber, K.J., Withers, P.J.A., Ockenden, M.C., & Haygarth, P.M. (2018). The phosphorus transfer continuum: A framework for exploring effects of climate change. Agricultural and Environmental Letters, 3(1). https://doi:10.2134/ael2018.06.0036
29 Frantar, P. (2007). Geographical overview of water balance of Slovenia 1971–2000 by main river basins. Acta Geographica Slovenica, 47, 25–45.
30 Frignani, M., Langone, L., Ravaioli, M., Sorgente, D., Alvisi, F., & Albertazzi, S. (2005). Fine‐sediment mass balance in the western Adriatic continental shelf over a century time scale. Marine Geology, 222–223, 113–133. https://doi:10.1016/j.margeo.2005.06.016
31 Gellis, A.C., Hupp, C.R., Pavich, M.J., Landwehr, J.M., Banks, W.S.L., Hubbard, B. E., et al. (2008). Sources, transport, and storage of sediment at selected sites in the Chesapeake Bay Watershed (Scientific Investigations Report 2008‐5186, 95 pp.). Reston, VA: US Geological Survey.
32 Giani, M., Djakovac, T., Degobbis, D., Cozzi, S., Solidoro, C., & Umani, S.F. (2012). Recent changes in the marine ecosystems of the northern Adriatic Sea. Estuarine, Coastal and Shelf Science, 115, 1–13. https://doi:10.1016/j.ecss.2012.08.023
33 Glennie, E.B., Littlejohn, C., Gendebien, A., Hayes, A., Palfrey, R. Sivil, D., & Wright, K. (2002). Phosphates and alternative detergent builders—final report (UC4011, 172 pp.). EU Environment Directorate.
34 Hagy, J.D., Boynton, W.R., Keefe, C.W., & Wood, K.V. (2004). Hypoxia in Chesapeake Bay, 1950–2001: Long‐term change in relation to nutrient loading and river flow. Estuaries, 27(4), 634–658. https://doi:10.1007/bf02907650
35 Hirsch, R.M. (2012). Flux of nitrogen, phosphorus, and suspended sediment from the Susquehanna river basin to the Chesapeake Bay during Tropical Storm Lee, September 2011, as an indicator of the effects of reservoir sedimentation on water quality (Scientific Investigations Report 2012‐5185, 17 pp.). Reston, VA: US Geological Survey.
36 Hirsch, R.M., Moyer, D.L., & Archfield, S.A. (2010). Weighted Regressions on Time, Discharge, and Season (WRTDS), with an application to Chesapeake Bay River inputs. Journal of the American Water Resources Association, 46(5), 857–880. https://doi:10.1111/j.1752‐1688.2010.00482.x
37 Hoffmann, C.C., Kjaergaard, C., Uusi‐Kamppa, J., Hansen, H.C., & Kronvang, B. (2009). Phosphorus retention in riparian buffers: Review of their efficiency. Journal of Environmental Quality, 38(5), 1942–1955. https://doi:10.2134/jeq2008.0087
38 House, W.A. (2003). Geochemical cycling of phosphorus in rivers. Applied Geochemistry, 18(5), 739–748. https://doi:10.1016/s0883‐2927(02)00158‐0
39 Jarvie, H.P., Sharpley, A.N., Spears, B., Buda, A.R., May, L., & Kleinman, P.J. (2013). Water quality remediation faces unprecedented challenges from “legacy phosphorus.” Environmental Science and Technology, 47(16), 8997–8998. https://doi:10.1021/es403160a
40 Kemp, W.M., Boynton, W.R., Adolf, J.E., Boesch, D.F., Boicourt, W.C., Brush, G., et al. (2005). Eutrophication of Chesapeake Bay: Historical trends and ecological interactions. Marine Ecology Progress Series, 303, 1–29. https://doi:10.3354/meps303001
41 Kemp, W.M., Testa, J.M. Conley, D.J., Gilbert, D., & Hagy, J.D. (2009). Temporal responses of coastal hypoxia to nutrient loading and physical controls. Biogeosciences, 6(12), 2985–3008. https://doi:10.5194/bg‐6‐2985‐2009
42 Langland, M.J. (2015). Sediment transport and capacity change in three reservoirs, Lower Susquehanna River Basin, Pennsylvania and Maryland, 1900–2012 (Open‐File Report 2014–1235, 18 pp.). Reston, VA: US Geological Survey.
43 Langland, M.J., & Hainly, R.A. (1997). Changes in bottom‐surface elevations in three reservoirs on the lower Susquehanna River, Pennsylvania and Maryland, following the January 1996 flood—implications for nutrient and sediment loads to Chesapeake Bay (34 pp.). Lemoyne, PA: US Geological Survey.
44 Linker, L.C., Batiuk, R.A., Shenk, G.W., & Cerco, C.F. (2013). Development of the Chesapeake Bay Watershed Total Maximum Daily Load allocation. Journal of the American Water Resources Association, 49(5), 986–1006. https://doi:10.1111/jawr.12105
45 Linker, L.C., Dennis, R., Shenk, G.W., Batiuk, R.A., Grimm, J., & Wang, P. (2013). Computing atmospheric nutrient loads to the Chesapeake Bay watershed and tidal waters. Journal of the American Water Resources Association, 49(5), 1025–1041. https://doi:10.1111/jawr.12112
46 Litke, D.W. (1999). Review of phosphorus control measures in the United States and their effects on water quality (43 pp.). Denver, CO: US Geological Survey.
47 Marchetti, R., A. Provini, & G. Crosa (1989). Nutrient load carried by the River Po into the Adriatic Sea, 1968–1987. Marine Pollution Bulletin, 20(4), 168–172. https://doi:10.1016/0025‐326x(89)90487‐6.
48 Marchina, C., Bianchini, G., Natali, C., Pennisi, M., Colombani, N., Tassinari, R., & Knoeller, K. (2015). The Po river water from the Alps to the Adriatic Sea (Italy): New insights from geochemical and isotopic (δ18D–δD) data. Environmental Science and Pollution Research International, 22(7), 5184–5203. https://doi:10.1007/s11356‐014‐3750‐6
49 Meier, H.E.M., Eilola, K., Almroth‐Rosell, E., Schimanke, S., Kniebusch, M., Höglund, A., et al. (2018). Disentangling the impact of nutrient load and climate changes on Baltic Sea hypoxia and eutrophication since 1850. Climate Dynamics, 53(1–2), 1145–1166. https://doi:10.1007/s00382‐018‐4296‐y
50 Milly, P.C., Dunne, K.A., & Vecchia, A.V. (2005). Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438(7066), 347–350. https://doi:10.1038/nature04312
51 Moyer, D.L., Hirsch, R.M., & Hyer, K.E. (2012). Comparison of two regression‐based approaches for determining nutrient and sediment fluxes and trends in the Chesapeake Bay watershed (Scientific Investigations Report 2012‐5244, 118 pp.). Reston, VA: US Geological Survey.
52 Murphy, R.R., Kemp, W.M., & Ball, W.P. (2011). Long‐term trends in Chesapeake Bay seasonal hypoxia, stratification, and nutrient loading. Estuaries and Coasts, 34(6), 1293–1309. https://doi:10.1007/s12237‐011‐9413‐7
53 Najjar, R.G., Pyke, C.R., Adams, M.B., Breitburg, D., Hershner, C., Kemp, M., et al. (2010). Potential climate‐change impacts on the Chesapeake Bay. Estuarine, Coastal and Shelf Science, 86(1), 1–20. https://doi:10.1016/j.ecss.2009.09.026
54 New York State Department of Environmental Conservation (2007). New York State tributary strategy for Chesapeake Bay restoration.
55 Palmeri, L., Bendoricchio, G., & Artioli, Y. (2005). Modelling nutrient emissions from river systems and loads to the coastal zone: Po River case study, Italy. Ecological Modelling, 184(1), 37–53. https://doi:10.1016/j.ecolmodel.2004.11.007
56 Pennsylvania Department of Environmental Protection (2004). Pennsylvania's Chesapeake Bay tributary strategy.
57 Pizzuto, J., Schenk, E.R., Hupp, C.R., Gellis, A., Noe, G., Williamson, E., et al. (2014). Characteristic length scales and time‐averaged transport velocities of suspended sediment in the mid‐Atlantic Region, USA. Water Resources Research, 50(2), 790–805. https://doi:10.1002/2013wr014485
58 Rankinen, K., Keinänen, H., & Cano Bernal, J. E. (2016). Influence of climate and land use changes on nutrient fluxes from Finnish rivers to the Baltic Sea. Agriculture, Ecosystems and Environment, 216, 100–115. https://doi:10.1016/j.agee.2015.09.010
59 Rice, K.C., & Jastram, J.D. (2014). Rising air and stream‐water temperatures in Chesapeake Bay region, USA. Climate Change, 128(1–2), 127–138. https://doi:10.1007/s10584‐014‐1295‐9
60 Rice, K.C., Moyer, D.L., & Mills, A.L. (2017). Riverine discharges to Chesapeake Bay: Analysis of long‐term (1927–2014) records and implications for future flows in the Chesapeake Bay basin. Journal of Environmental Management, 204(Pt 1), 246–254. https://doi:10.1016/j.jenvman.2017.08.057
61 Rinaldi, A. (2014). Fioriture algali in Adriatico. Il bacino padano‐adriatico tra sviluppo e scienza. Brossura cucita.
62 Salvetti, R., Azzellino, A., & Vismara, R. (2006). Diffuse source apportionment of the Po river eutrophying load to the Adriatic sea: Assessment of Lombardy contribution to Po river nutrient load apportionment by means of an integrated modelling approach. Chemosphere, 65(11), 2168–2177. https://doi:10.1016/j.chemosphere.2006.06.012
63 Sanford, W.E., & Pope, J.P. (2013). Quantifying groundwater's role in delaying improvements to Chesapeake Bay water quality. Environmental Science and Technology, 47(23), 13330–13338. https://doi:10.1021/es401334k
64 Scroccaro, I., Ostoich, M., Umgiesser, G., De Pascalis, F., Colugnati, L., Mattassi, G., et al. (2010). Submarine wastewater discharges: dispersion modelling in the Northern Adriatic Sea. Environmental Science and Pollution Research International, 17(4), 844–855. https://doi:10.1007/s11356‐009‐0273‐7
65 Seagle, S.W., Pagnotta, R., & Cross, F.A. (1999). The Chesapeake Bay and Northern Adriatic Sea drainage basins: Land‐cover and nutrient export. In T.C. Malone, A. Malej, L.W. Harding Jr., N. Smodlaka, R.E. Turner (Eds.), Ecosystems at the land‐sea margin: Drainage basin to coastal sea (Coastal and Estuarine Studies, Vol. 55, pp. 7–27). Washington, DC: American Geophysical Union.
66 Sekulić, B., Martinis, M. & Nađ, K. (2004). Estimate of sea loading by pollutants originating from the littoral counties in the Republic of Croatia. Chemistry and Ecology, 20(6), 437–447. https://doi:10.1080/02757540412331304199
67 Sharpley, A., Jarvie, H.P., Buda, A., May, L., Spears, B., & Kleinman, P. (2013). Phosphorus legacy: Overcoming the effects of past management practices to mitigate future water quality impairment. Journal of Environmental Quality, 42(5), 1308–1326. https://doi:10.2134/jeq2013.03.0098
68 Shenk, G.W., & Linker, L.C. (2013). Development and application of the 2010 Chesapeake Bay Watershed Total Maximum Daily Load Model. Journal of the American Water Resources Association, 49(5), 1042–1056. https://doi:10.1111/jawr.12109
69 Shields, C.A., Band, L.E., Law, N., Groffman, P.M., Kaushal, S.S., Savvas, K., et al. (2008). Streamflow distribution of non‐point source nitrogen export from urban‐rural catchments in the Chesapeake Bay watershed. Water Resources Research, 44(9). https://doi:10.1029/2007wr006360
70 Sinha, E., Michalak, A.M., & Balaji, V. (2017). Eutrophication will increase during the 21st century as a result of precipitation changes. Science, 357(6349), 405–408. https://doi:10.1126/science.aan2409
71 Stachowitsch, M. (2014). Preface “Coastal hypoxia and anoxia: a multi‐tiered holistic approach.” Biogeosciences, 11(8), 2281–2285. https://doi:10.5194/bg‐11‐2281‐2014
72 Teodosiu, C., Barjoveanu, G., & Teleman, D. (2003). Sustainable water resources management 1. River basin management and the EC Water Framework Directive. Environmental Engineering and Management Journal, 2(4), 377–394.
73 Tesi, T., Miserocchi, S., Acri, F., Langone, L., Boldrin, A., Hatten, J.A. & Albertazzi, S. (2013). Flood‐driven transport of sediment, particulate organic matter, and nutrients from the Po River watershed to the Mediterranean Sea. Journal of Hydrology, 498, 144–152. https://doi:10.1016/j.jhydrol.2013.06.001
74 Testa, J.M., Li, Y., Lee, Y.J., Li, M., Brady, D.C, Di Toro, D.M., et al. (2014). Quantifying the effects of nutrient loading on dissolved O2 cycling and hypoxia in Chesapeake Bay using a coupled hydrodynamic–biogeochemical model. Journal of Marine Systems, 139, 139–158. https://doi:10.1016/j.jmarsys.2014.05.018
75 Testa, J.M., Lyubchich, V., & Zhang, Q. (2019). Patterns and trends in Secchi disk depth over three decades in the Chesapeake Bay estuarine complex. Estuaries and Coasts, 42(4), 927–943. https://doi:10.1007/s12237‐019‐00547‐9
76 The EU.WATER Project (2010). Transnational integrated management of water resources in agriculture for European water emergency control (47 pp.).
77 Thompson, S.E., Basu, N.B., Lascurain Jr., J., Aubeneau, A., & Rao, P.S.C. (2011). Relative dominance of hydrologic versus biogeochemical factors on solute export across impact gradients. Water Resources Research, 47W00J05. https://doi:10.1029/2010WR009605
78 US Department of Agriculture, & US. Environmental Protection Agency (1999). Unified national strategy for animal feeding operations. Washington, DC.
79 US Environmental Protection Agency (2000). Fact Sheet 1.0—Stormwater Phase II Final Rule: An overview. Washington, DC.
80 US Environmental Protection Agency (2010). Chesapeake Bay Total Maximum Daily Load for nitrogen, phosphorus and sediment. Annapolis, MD.
81 US Geological Survey (2018). Surface‐water data for the nation. http://dx.doi.org/10.5066/F7P55KJN
82 Van Meter, K.J., Basu, N.B. & Van Cappellen, P. (2017). Two centuries of nitrogen dynamics: Legacy sources and sinks in the Mississippi and Susquehanna River Basins. Global Biogeochemical Cycles, 31(1), 2–23. https://doi:10.1002/2016gb005498
83 Van Meter, K.J., Van Cappellen, P., & Basu, N.B. (2018). Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico. Science, 360(6387), 427–430. https://doi:10.1126/science.aar4462
84 Vero, S.E., Basu, N.B., Van Meter, K., Richards, K.G., Mellander, P.‐E., Healy, M.G., & Fenton, O. (2017). Review: The environmental status and implications of the nitrate time lag in Europe and North America. Hydrogeology Journal, 26(1), 7–22. https://doi:10.1007/s10040‐017‐1650‐9
85 Viaroli, P., Puma, F., & Ferrari, I. (2010). Aggiornamento delle conoscenze ecologiche sul bacino idrografico padano: una sintesi. Biologia Ambientale, 24, 7–19.
86 Viaroli, P., Soana, E., Pecora, S., Laini, A., Naldi, M., Fano, E.A., & Nizzoli, D. (2018). Space and time variations of watershed N and P budgets and their relationships with reactive N and P loadings in a heavily impacted river basin (Po river, Northern Italy). Science of the Total Environment, 639, 1574–1587. https://doi:10.1016/j.scitotenv.2018.05.233
87 Volf, G., Atanasova, N., Kompare, B. & Ožanić, N. (2013). Modeling nutrient loads to the northern Adriatic, Journal of Hydrology, 504, 182–193. https://doi:10.1016/j.jhydrol.2013.09.044
88 Volf, G., Atanasova, N., Skerjanec, M., & Ozanic, N. (2018). Hybrid modeling approach for the northern Adriatic watershed management. Science of the Total Environment, 635, 353–363. https://doi:10.1016/j.scitotenv.2018.04.094
89 Voulvoulis, N., Arpon, K.D., & Giakoumis, T. (2017). The EU Water Framework Directive: From great expectations to problems with implementation. Science of the Total Environment, 575, 358–366. https://doi:10.1016/j.scitotenv.2016.09.228
90 Wagena, M.B., Collick, A.S., Ross, A.C., Najjar, R.G., Rau, B., Sommerlot, A.R., et al. (2018). Impact of climate change and climate anomalies on hydrologic and biogeochemical processes in an agricultural catchment of the Chesapeake Bay watershed, USA. Science of the Total Environment, 637–638, 1443–1454. https://doi:10.1016/j.scitotenv.2018.05.116
91 Walter, R.C., & Merritts, D.J. (2008). Natural streams and the legacy of water‐powered mills. Science, 319(5861), 299–304. https://doi:10.1126/science.1151716
92 Withers, P.J., & Jarvie, H.P. (2008). Delivery and cycling of phosphorus in rivers: A review. Science of the Total Environment, 400(1–3), 379–395. https://doi:10.1016/j.scitotenv.2008.08.002
93 Zampieri, M., Scoccimarro, E., Gualdi, S., & Navarra, A. (2015). Observed shift towards earlier spring discharge in the main Alpine rivers. Science of the Total Environment, 503–504, 222–232. https://doi:10.1016/j.scitotenv.2014.06.036
94 Zhang, Q., Ball, W.P., & Moyer, D.L. (2016). Decadal‐scale export of nitrogen, phosphorus, and sediment from the Susquehanna River basin, USA: Analysis and synthesis of temporal and spatial patterns. Science of the Total Environment, 563–564, 1016–1029. https://doi:10.1016/j.scitotenv.2016.03.104
95 Zhang, Q., Brady, D.C., & Ball, W.P. (2013). Long‐term seasonal trends of nitrogen, phosphorus, and suspended sediment load from the non‐tidal Susquehanna River Basin to Chesapeake Bay. Science of the Total Environment, 452–453, 208–221. https://doi:10.1016/j.scitotenv.2013.02.012
96 Zhang, Q., Brady, D.C., Boynton, W.R., & Ball, W.P. (2015). Long‐term trends of nutrients and sediment from the nontidal Chesapeake watershed: An assessment of progress by river and season. Journal of the American Water Resources Association, 51(6), 1534–1555. https://doi:10.1111/1752‐1688.12327
97 Zhang, Q., Hirsch, R.M., & Ball, W.P. (2016). Long‐term changes in sediment and nutrient delivery from Conowingo Dam to Chesapeake Bay: Effects of reservoir sedimentation. Environmental Science and Technology, 50(4), 1877–1886. https://doi:10.1021/acs.est.5b04073
98 Zhang, Q., Murphy, R.R., Tian, R., Forsyth, M.K., Trentacoste, E.M., Keisman, J., & Tango, P.J. (2018). Chesapeake Bay's water quality condition has been recovering: Insights from a multimetric indicator assessment of thirty years of tidal monitoring data. Science of the Total Environment, 637–638, 1617–1625. https://doi:10.1016/j.scitotenv.2018.05.025