Читать книгу DNA- and RNA-Based Computing Systems - Группа авторов - Страница 15
References
Оглавление1 1 Moore, G.E. (1998). Proc. IEEE 86: 82–85.
2 2 Katz, E. (2019). ChemPhysChem 20: 9–22.
3 3 Calude, C.S., Costa, J.F., Dershowitz, N. et al. (eds.) (2009). Unconventional Computation, Lecture Notes in Computer Science, vol. 5715. Berlin: Springer.
4 4 Adamatzky, A. (ed.) (2017). Advances in Unconventional Computing, Emergence, Complexity and Computation, 2 volumes. Switzerland: Springer.
5 5 Mermin, N.D. (2007). Quantum Computer Science: An Introduction. Cambridge: Cambridge University Press.
6 6 Szacilowski, K. (2012). Infochemistry – Information Processing at the Nanoscale. Chichester: Wiley.
7 7 de Silva, A.P. (2013). Molecular Logic‐Based Computation. Cambridge: Royal Society of Chemistry.
8 8 Katz, E. (ed.) (2012). Molecular and Supramolecular Information Processing – From Molecular Switches to Logic Systems. Weinheim: Willey‐VCH.
9 9 Sienko, T. (ed.) (2003). Molecular Computing (Series Eds.: Adamatzky, A., Conrad, M., and Rambidi, N.G.). Cambridge, MA: MIT Press.
10 10 Spitzer, N.C. and Sejnowski, T.J. (1997). Science 277: 1060–1061.
11 11 Kampfner, R.R. (1989). BioSystems 22: 223–230.
12 12 Katz, E. (ed.) (2012). Biomolecular Computing – From Logic Systems to Smart Sensors and Actuators. Weinheim: Wiley‐VCH.
13 13 Stojanovic, M.N., Stefanovic, D., and Rudchenko, S. (2014). Acc. Chem. Res. 47: 1845–1852.
14 14 Stojanovic, M.N. and Stefanovic, D. (2011). J. Comput. Theor. Nanosci. 8: 434–440.
15 15 Ezziane, Z. (2006). Nanotechnology 17: R27–R39.
16 16 Xie, Z., Wroblewska, L., Prochazka, L. et al. (2011). Science 333: 1307–1311.
17 17 Ashkenasy, G., Dadon, Z., Alesebi, S. et al. (2011). Isr. J. Chem. 51: 106–117.
18 18 Unger, R. and Moult, J. (2006). Proteins 63: 53–64.
19 19 Katz, E. and Privman, V. (2010). Chem. Soc. Rev. 39: 1835–1857.
20 20 Katz, E. (2015). Curr. Opin. Biotechnol. 34: 202–208.
21 21 Halámek, J., Tam, T.K., Chinnapareddy, S. et al. (2010). J. Phys. Chem. Lett. 1: 973–977.
22 22 Rinaudo, K., Bleris, L., Maddamsetti, R. et al. (2007). Nat. Biotechnol. 25: 795–801.
23 23 Arugula, M.A., Shroff, N., Katz, E., and He, Z. (2012). Chem. Commun. 48: 10174–10176.
24 24 Adamatzky, A. (2010). Physarum Machines – Computers from Slime Mould. London: World Scientific.
25 25 Kahan, M., Gil, B., Adar, R., and Shapiro, E. (2008). Physica D 237: 1165–1172.
26 26 Alon, U. (2006). An Introduction to Systems Biology: Design Principles of Biological Circuits. Boca Raton, FL: Chapman & Hall/CRC.
27 27 Benenson, Y. (2009). Mol. Biosyst. 5: 675–685.
28 28 Adleman, L.M. (1994). Science 266: 1021–1024.
29 29 Katz, E., Wang, J., Privman, M., and Halámek, J. (2012). Anal. Chem. 84: 5463–5469.
30 30 Wang, J. and Katz, E. (2011). Isr. J. Chem. 51: 141–150.
31 31 Wang, J. and Katz, E. (2010). Anal. Bioanal. Chem. 398: 1591–1603.
32 32 Halámková, L., Halámek, J., Bocharova, V. et al. (2012). Analyst 137: 1768–1770.
33 33 Halámek, J., Windmiller, J.R., Zhou, J. et al. (2010). Analyst 135: 2249–2259.
34 34 Minko, S., Katz, E., Motornov, M. et al. (2011). J. Comput. Theor. Nanosci. 8: 356–364.
35 35 Tokarev, I., Gopishetty, V., Zhou, J. et al. (2009). ACS Appl. Mater. Interfaces 1: 532–536.
36 36 Pita, M., Minko, S., and Katz, E. (2009). J. Mater. Sci. ‐ Mater. Med. 20: 457–462.
37 37 Katz, E. and Minko, S. (2015). Chem. Commun. 51: 3493–3500.
38 38 Katz, E. (2010). Electroanalysis 22: 744–756.
39 39 Okhokhonin, A.V., Domanskyi, S., Filipov, Y. et al. (2018). Electroanalysis 30: 426–435.
40 40 Filipov, Y., Gamella, M., and Katz, E. (2018). Electroanalysis 30: 1281–1286.
41 41 Gamella, M., Privman, M., Bakshi, S. et al. (2017). ChemPhysChem 18: 1811–1821.
42 42 Gamella, M., Zakharchenko, A., Guz, N. et al. (2017). Electroanalysis 29: 398–408.
43 43 Katz, E., Pingarrón, J.M., Mailloux, S. et al. (2015). J. Phys. Chem. Lett. 6: 1340–1347.
44 44 Katz, E. (2019). Enzyme‐Based Computing Systems. Wiley‐VCH.
45 45 Watson, J.D. and Crick, F.H.C. (1953). Nature 171: 737–738.
46 46 Micklos, D. and Freyer, G. (2003). DNA Science: A First Course, 2e. New York: Cold Spring Harbor Laboratory Press.
47 47 Calladine, C.R., Drew, H., Luisi, B., and Travers, A. (2004). Understanding DNA: The Molecule and How It Works, 3e. San Diego, CA: Elsevier Academic Press.
48 48 Douglas, K. (2017). DNA Nanoscience. Boca Raton, FL: CRC Press.
49 49 Fitzgerald‐Hayes, M. and Reichsman, F. (2009). DNA and Biotechnology, 3e. Amsterdam, Imprint: Academic Press: Elsevier.
50 50 Boneh, D., Dunworth, C., Lipton, R.J., and Sgall, J. (1996). Discrete Appl. Math. 71: 79–94.
51 51 Rozen, D.E., McGrew, S., and Ellington, A.D. (1996). Curr. Biol. 6: 254–257.
52 52 Eghdami, H. and Darehmiraki, M. (2012). Artif. Intell. Rev. 38: 223–235.
53 53 Ogihara, M. and Ray, A. (2000). Nature 403: 143–144.
54 54 Parker, J. (2003). EMBO Rep. 4: 7–10.
55 55 Mehrotra, A. (2015). Int. J. Latest Technol. Eng. Manage. Appl. Sci. (IJLTEMAS) 4 (12): 62–67.
56 56 Adleman, L.M. (1998). Sci. Am. 279 (2): 54–61.
57 57 Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., and Shmoys, D.B. (eds.) (1995). The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Chichester: Wiley‐Interscience.
58 58 Laporte, G. (1992). Eur. J. Oper. Res. 59: 231–247.
59 59 Applegate, D.L., Bixby, R.E., Chvátal, V., and Cook, W.J. (2006). The Traveling Salesman Problem – A Computational Study. Princeton, NJ: Princeton University Press.
60 60 Reif, J.H. (1999). Algorithmica 25: 142–175.
61 61 Kumar, S.N. (2015). Am. J. Nanomater. 3 (1): 1–14.
62 62 Moe‐Behrens, G.H.‐G. (2013). Comput. Struct. Biotechnol. J. 7 (Art. No.: e201304003).
63 63 Bonnet, J., Yin, P., Ortiz, M.E. et al. (2013). Science 340: 599–603.
64 64 Benenson, Y., Gil, B., Ben‐Dor, U. et al. (2004). Nature 429: 423–429.
65 65 Green, A.A., Kim, J., Ma, D. et al. (2017). Nature 548: 117–121.
66 66 Qian, L., Winfree, E., and Bruck, J. (2011). Nature 475: 368–372.
67 67 Macdonald, J., Stefanovic, D., and Stojanovic, M.N. (2008). Sci. Am. 299 (5): 84–91.
68 68 Stojanovic, M.N. and Stefanovic, D. (2003). Nat. Biotechnol. 21: 1069–1074.
69 69 Elstner, M. and Schiller, A. (2015). J. Chem. Inf. Model. 55: 1547–1551.
70 70 Seeman, N.C. (1982). J. Theor. Biol. 99: 237–247.
71 71 Rothemund, P.W.K. (2006). Nature 440: 297–302.
72 72 Jun, H., Zhang, F., Shepherd, T. et al. (2019). Sci. Adv. 5 (Art. No.: eaav0655).
73 73 Hong, F., Zhang, F., Liu, Y., and Yan, H. (2017). Chem. Rev. 117: 12584–12640.
74 74 Wang, D.F., Fu, Y.M., Yan, J. et al. (2014). Anal. Chem. 86: 1932–1936.
75 75 Amir, Y., Ben‐Ishay, E., Levner, D. et al. (2014). Nat. Nanotechnol. 9: 353–357.
76 76 Kogikoski, S. Jr. Paschoalino, W.J., and Kubota, L.T. (2018). TrAC, Trends Anal. Chem. 108 (Art. No.: 88e97).
77 77 Endo, M. and Sugiyama, H. (2018). Molecules 23 (Art. No.: 1766).
78 78 Ramsay, G. (1998). Nat. Biotechnol. 16: 40–44.
79 79 Phillips, A. and Cardelli, L. (2009). J. R. Soc. Interface 6: S419–S436.
80 80 Spaccasassi, C., Lakin, M.R., and Phillips, A. (2019). ACS Synth. Biol. 8: 1530–1547.
81 81 Nielsen, A.A.K., Der, B.S., Shin, J. et al. (2016). Science 352 (6281): 53.
82 82 Panda, D., Molla, K.A., Baig, M.J. et al. (2018). 3 Biotech 8 (Art. No.: 239).
83 83 Baum, E.B. (1995). Science 268: 584–585.
84 84 Zhirnov, V., Zadegan, R.M., Sandhu, G.S. et al. (2016). Nat. Mater. 15: 366–370.
85 85 Ceze, L., Nivala, J., and Strauss, K. (2019). Nat. Rev. Genet. 20: 456–466.
86 86 Zhang, S.F., Huang, B.B., Song, X.M. et al. (2019). 3 Biotech 9 (Art. No.: 342).
87 87 Tomek, K.J., Volkel, K., Simpson, A. et al. (2019). ACS Synth. Biol. 8: 1241–1248.
88 88 Ma, S., Tang, N., and Tian, J. (2012). Curr. Opin. Chem. Biol. 16: 260–267.
89 89 Behlke, M.A., Berghof‐Jäger, K., Brown, T. et al. (2019). Polymerase Chain Reaction: Theory and Technology. Poole: Caister Academic Press.
90 90 Garibyan, L. and Avashia, N. (2013). J. Invest. Dermatol. 133 (3), art No. e6.
91 91 Alves Valones, M.A., Lima Guimarães, R., Cavalcanti Brandão, L.A. et al. (2009). Braz. J. Microbiol. 40 (1): 1–11.
92 92 Powledge, T.M. (2004). Adv. Physiol. Educ. 28: 44–50.
93 93 Shendure, J., Balasubramanian, S., Church, G.M. et al. (2017). Nature 550: 345–353.
94 94 Dolgin, E. (2009). Nature 462: 843–845.
95 95 Agah, S., Zheng, M., Pasquali, M., and Kolomeisky, A.B. (2016). J. Phys. D: Appl. Phys. 49 (Art. No.: 413001).
96 96 Stefano, G.B., Wang, F.Z., and Kream, R.M. (2018). Med. Sci. Monit. 24: 1185–1187.
97 97 Takahashi, C.N., Nguyen, B.H., Strauss, K., and Ceze, L. (2019). Sci. Rep. 9 (Art. No.: 4998).
98 98 Goldman, N., Bertone, P., Chen, S. et al. (2013). Nature 494: 77–80.
99 99 Anavy, L., Vaknin, I., Atar, O. et al. (2019). Nat. Biotechnol. 37: 1229–1236.
100 100 Organick, L., Ang, S.D., Chen, Y.‐J. et al. (2018). Nat. Biotechnol. 36: 242–248.
101 101 Church, G.M., Gao, Y., and Kosuri, S. (2012). Science 337: 1628.
102 102 Shipman, S.L., Nivala, J., Macklis, J.D., and Church, G.M. (2017). Nature 547: 345–349.
103 103 Li, S., Jiang, Q., Liu, S. et al. (2018). Nat. Biotechnol. 36: 258–264.
104 104 Ma, W., Zhan, Y., Zhang, Y. et al. (2019). Nano Lett. 19: 4505–4517.
105 105 De Silva, P.Y. and Ganegoda, G.U. (2016). BioMed Res. Int. 2016 (Art. No.: 8072463).
106 106 Tagore, S., Bhattacharya, S., Islam, M.A., and Islam, M.L. (2010). J. Proteomics Bioinform. 3: 234–243.
107 107 Currin, A., Korovin, K., Ababi, M. et al. (2017). J. R. Soc. Interface 14 (Art. No.: 20160990).