Читать книгу Metal Oxide Nanocomposites - Группа авторов - Страница 21

References

Оглавление

1. Ajayan, P.M., Schadler, L.S., Braun, P.V., Nanocomposite Science and Technology, WILEY-VCH Verlag GmbH, Weinheim, 2003.

2. Mantel, S.C. and Cohen, D., Filament Winding, in: Processing of Composites, Hanser, Munich, 2000.

3. Price, T.L., Dalley, G., McCullough, P.C., Choquette, L., Handbook: Manufacturing Advanced Composite Components for Airframes, Report DOT/FAA/AR-96/75, Federal Aviation Administration Washington DC Office of Aviation Research, 1997.

4. Jang, B.Z., Fibers and Matrix Resins, in: Advanced Polymer Composites: Principles and Applications, p. 24, CRC Press, Boca Raton, Florida, USA, 1994.

5. Scola, D.A., Polyimide Resins, in: ASM Handbook 21 Composites, p. 107, ASM Digital Library, ASM International, 9639 Kinsman Road Materials Park, OH, USA, Inc, 2001.

6. Tsai, S.W., Composites Design, Think Composites, Dayton, OH, pp. 1–21, 1986.

7. Campbell, F.C., Manufacturing Processes For Advanced Composites, Elsevier, UK, 2004.

8. Groover, M.P., Fundamentals of Modern Manufacturing-Materials, Processes, and Systems, Wiley, USA, 1996.

9. Cogswell, E.N., Thermoplastic Aromatic Polymer Composites, Butterworth-Heinemann, USA, 1992.

10. Campbell, F.C., Secondary Adhesive Bonding of Polymer-Matrix Composites, in: ASM Handbook Composites, ASM International, OH, USA, 2001.

11. Astrom, B.T., Manufacturing of Polymer Composites, Chapman & Hall, Taylor and Francis Group, USA, 1997.

12. Mallick, P.K., Fiber Reinforced Composites: Materials, Manufacturing and Design, Marcel Dekker, New York, USA, 1993.

13. Jang, B.Z., Advanced Polymer Composites: Principles and Applications, p. 52., CRC Press, Boca Raton, Florida, USA, 1994.

14. Merhari, L., Hybrid Nanocomposites for Nanotechnology: Electronic, Optical, Magnetic and Biomedical Applications, Springer, USA, 2009.

15. Kuberski, L.E., Machining, Trimming, and Routing of Polymer-Matrix Composites, in: ASM Handbook 21 Composites, pp. 616–619, OH, USA, 2001.

16. Swanson, S.R., Introduction to Design and Analysis with Advanced Composite Materials, Prentice-Hall, Upper Saddle River, New Jersey, USA, 1997.

17. Geim, A.K., Graphene: status and prospects. Science, 324, 5934, 1530–1534, 2009.

18. Stankovich, S. et al., Graphene-based composite materials. Nature, 442, 7100, 282, 2006.

19. Hancock, Y., The 2010 Nobel Prize in physics—Ground-breaking experiments on graphene. J. Phys. D: Appl. Phys., 44, 47, 473001, 2011.

20. Gao, W., The chemistry of graphene oxide, in: Graphene oxide, pp. 61–95, Springer Nature, Switzerland, 2015.

21. Emtsev, K.V. et al., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater., 8, 3, 203, 2009.

22. Berger, C. et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B, 108, 52, 19912–19916, 2004.

23. Bagley, J. et al., High yield bottom-up PECVD synthesis of graphene nanoribbons and their application in supercapacitors. In: 255th American Chemical Society National Meeting & Exposition, March 18-22, 2018, New Orleans, LA. https://resolver.caltech.edu/CaltechAUTHORS:20180412-074132598

24. Neelgund, G.M. et al., Synthesis and characterization of polyaniline derivative and silver nanoparticle composites. Polym. Int., 57, 10, 1083–1089, 2008.

25. Bourlinos, A.B. et al., Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir, 19, 15, 6050–6055, 2003.

26. Wang, S. et al., Band-like transport in surface-functionalized highly solution-processable graphene nanosheets. Adv. Mater., 20, 18, 3440–3446, 2008.

27. Fan, X. et al., Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater., 20, 23, 4490–4493, 2008.

28. Chen, W., Yan, L., Bangal, P.R., Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon, 48, 4, 1146–1152, 2010.

29. Wang, D. et al., Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano, 3, 4, 907–914, 2009.

30. Zhang, Q. et al., Fabrication of a Biocompatible and Conductive Platform Based on a Single-Stranded DNA/Graphene Nanocomposite for Direct Electrochemistry and Electrocatalysis. Chem.–Eur. J., 16, 27, 8133–8139, 2010.

31. Hirsch, A., Covalent Functionalization of Graphene, in: Meeting Abstracts, The Electrochemical Society, 2015.

32. Iijima, S., Helical microtubules of graphitic carbon. Nature, 354, 56–58, 1991.

33. Eder, D., Carbon nanotube-inorganic hybrids. Chem. Rev., 110, 3, 1348–85, 2010.

34. Karousis, N., Tagmatarchis, N., Tasis, D., Current progress on the chemical modification of carbon nanotubes. Chem. Rev., 110, 9, 5366–97, 2010.

35. Thostenson, E.T., Ren, Z., Chou, T.W., Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol., 61, 13, 1899–1912, 2001.

36. Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M., Chemistry of carbon nanotubes. Chem. Rev., 106, 3, 1105–36, 2006.

37. Journet, C., Maser, W.K., Bernier, P., Loiseau, A., Lamy de la Chapelle, M., Lefrant, S., Deniard, P., Lee, R., Fischer, J.E., Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 388, 756–758, 1997.

38. Rinzler, A.G., Liu, J., Dai, H., Nikolaev, P., Huffman, C.B., Rodríguez-Macías, F.J., Boul, P.J., Lu, A.H., Heymann, D., Colbert, D.T., Lee, R.S., Fischer, J.E., Rao, A.M., Eklund, P.C., Smalley, R.E., Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl. Phys. A, 67, 1, 29–37, 1998.

39. Nikolaev, P., Bronikowski, M.J., Bradley, R.K., Rohmund, F., Colbert, D.T., Smith, K.A., Smalley, R.E., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett., 313, 1–2, 91–97, 1999.

40. Ren, Z.F., Huang, Z.P., Wang, D.Z., Wen, J.G., Xu, J.W., Wang, J.H., Calvet, L.E., Chen, J., Klemic, J.F., Reed, M.A., Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett., 75, 8, 1086–1088, 1999.

41. Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., Provencio, P.N., Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science, 282, 5391, 1105–1107, 1998.

42. Huang, Z.P., Xu, J.W., Ren, Z.F., Wang, J.H., Siegal, M.P., Provencio, P.N., Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition. Appl. Phys. Lett., 73, 26, 3845–3847, 1998.

43. Salzmann, C.G., Llewellyn, S.A., Tobias, G., Ward, M.A.H., Huh, Y., Green, M.L.H., The role of carboxylated carbonaceous fragments in the functionalization and spectroscopy of a single-walled carbon-nanotube material. Adv. Mater., 19, 6, 883–887, 2007.

44. Chu, H., Wei, L., Cui, R., Wang, J., Li, Y., Carbon nanotubes combined with inorganic nanomaterials: Preparations and applications. Coord. Chem. Rev., 254, 9–10, 1117–1134, 2010.

45. Chu, K., Wu, Q., Jia, C., Liang, X., Nie, J., Tian, W., Gai, G., Guo, H., Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications. Compos. Sci. Technol., 70, 2, 298–304, 2010.

46. Peng, X., Chen, J., Misewich, J.A., Wong, S.S., Carbon nanotube-nanocrystal heterostructures. Chem. Soc. Rev., 38, 4, 1076–98, 2009.

47. Sainsbury, T. and Fitzmaurice, D., Carbon-nanotube-templated and pseudorotaxane-formation-driven gold nanowire self-assembly. Chem. Mater., 16, 11, 2174–2179, 2004.

48. Lu, J., Effect of surface modifications on the decoration of multi-walled carbon nanotubes with ruthenium nanoparticles. Carbon, 45, 8, 1599–1605, 2007.

49. Tan, Z., Abe, H., Naito, M., Ohara, S., Arrangement of palladium nanoparticles templated by supramolecular self-assembly of SDS wrapped on single-walled carbon nanotubes. Chem. Commun., 46, 24, 4363–4365, 2010.

50. Han, L., Wu, W., Kirk, F.L., Luo, J., Maye, M.M., Kariuki, N.N., Lin, Y., Wang, C., Zhong, C.J., A direct route toward assembly of nanoparticle-carbon nanotube composite materials. Langmuir: the ACS Journal of Surfaces and Colloids, 20, 14, 6019–25, 2004.

51. Rahman, G.M., Guldi, D.M., Zambon, E., Pasquato, L., Tagmatarchis, N., Prato, M., Dispersable carbon nanotube/gold nanohybrids: Evidence for strong electronic interactions. Small, 1, 5, 527–530, 2005.

52. Jiang, K., Eitan, A., Schadler, L.S., Ajayan, P.M., Siegel, R.W., Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes. Nano Lett., 3, 3, 275–277, 2003.

53. Quinn, B.M., Dekker, C., Lemay, S.G., Electrodeposition of noble metal nanoparticles on carbon nanotubes. J. Am. Chem. Soc., 127, 17, 6146–7, 2005.

54. Yoon, B. and Wai, C.M., Microemulsion-templated synthesis of carbon nanotube-supported pd and rh nanoparticles for catalytic applications. J. Am. Chem. Soc., 127, 49, 17174–5, 2005.

55. Day, T.M., Unwin, P.R., Wilson, N.R., Macpherson, J.V., Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks. J. Am. Chem. Soc., 127, 30, 10639–47, 2005.

56. Qu, J., Shen, Y., Qu, X., Dong, S., Preparation of hybrid thin film modified carbon nanotubes on glassy carbon electrode and its electrocatalysis for oxygen reduction. Chem. Commun., 1, 34–35, 2004.

57. Xue, B., Chen, P., Hong, Q., Lin, J., Tan, K.L., Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. J. Mater. Chem., 11, 2378–2381, 2001.

58. Zhang, D., Shi, L., Fu, H., Fang, J., Ultrasonic-assisted preparation of carbon nanotube/cerium oxide composites. Carbon, 44, 2849–2867, 2006.

59. Zanella, R., Basiuk, E.V., Santiago, P., Basiuk, V.A., Mireles, E., Puente-Lee, I., Saniger, J.M., Deposition of gold nanoparticles onto thiol-functionalized multiwalled carbon nanotubes. J. Phys. Chem. B, 109, 34, 16290–5, 2005.

60. Wu, B., Hu, D., Kuang, Y., Liu, B., Zhang, X., Chen, J., Functionalization of carbon nanotubes by an ionic-liquid polymer: Dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol. Angew. Chem. Int. Ed., 48, 26, 4751–4754, 2009.

61. Kim, D.S., Lee, T., Geckeler, K.E., Hole-doped single-walled carbon nanotubes: Ornamenting with gold nanoparticles in water. Angew. Chem. Int. Ed., 45, 1, 104–107, 2005.

62. Mauter, M.S. and Elimelech, M., Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol., 42, 16, 5843–5859, 2008.

63. Suarez-Martinez, I., Felten, A., Pireaux, J.J., Bittencourt, C., Ewels, C.P., Transition metal deposition on graphene and carbon nanotubes. J. Nanosci. Nanotechnol., 9, 6171–6175, 2009.

64. Kharisov, B.I., Kharissova, O.V., Mendez, U.O., De La Fuente, I.G., Decoration of carbon nanotubes with metal nanoparticles: Recent trends. Synth. React. Inorg. Met.-Org. Nano-Metal Chem., 46, 1, 55–76, 2016.

65. Chancolon, J., Archaimbault, F., Bonnamy, S., Traverse, A., Olivi, L., Vlaic, G., Confinement of selenium inside carbon nanotubes. Structural characterization by X-ray diffraction and X-ray absorption spectroscopy. J. Non-Cryst. Solids, 352, 2, 99–108, 2006.

66. Baaziz, W., Begin-Colin, S., Pichon, B.P., Florea, I., Ersen, O., Zafeiratos, S., Barbosa, R., Begin, D., Pham-Huu, C., High-density monodispersed cobalt nanoparticles filled into multiwalled carbon nanotubes. Chem. Mater., 24, 9, 1549–1551, 2012.

67. Nguyen, T.T. and Serp, P., Confinement of metal nanoparticles in carbon nanotubes. ChemCatChem, 5, 12, 3595–3603, 2013.

68. Kopyl, S.V.B., Bdikin, I., Maiorov, M., Sousa, A.C.M., Filling carbon nanotubes with magnetic particles. J. Mater. Chem. C, 1, 16, 2860–2866, 2013.

69. Chen, B., Ma, Q., Tan, C., Lim, T.T., Huang, L., Zhang, H., Carbon-based sorbents with three-dimensional architectures for water remediation. Small, 11, 27, 3319–3336, 2015.

70. Gupta, V.K., Moradi, O., Tyagi, I., Agarwal, S., Sadegh, H., Shahryari-Ghoshekandi, R., Makhlouf, A.S.H., Goodarzi, M., Garshasbi, A., Study on the removal of heavy metal ions from industry waste by carbon nanotubes: Effect of the surface modification. Crit. Rev. Environ. Sci. Technol., 46, 2, 93–118, 2016.

71. Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S.K., Grace, A.N., Bhatnagar, A., Role of nanomaterials in water treatment applications: A review. Chem. Eng. J., 306, 1116–1137, 2016.

72. Qu, L.L., Liu, Y.Y., Liu, M.K., Yang, G.H., Li, D.W., Li, H.T., Highly reproducible Ag NPs/CNT-intercalated GO membranes for enrichment and SERS detection of antibiotics. ACS Appl. Mater. Interfaces, 8, 41, 28180–28186, 2016.

73. Kanhere, P. and Chen, Z., A review on visible light active perovskite-based photocatalysts. Molecules, 19, 12, 19995–20022, 2014.

74. Zhu, J. and Zäch, M., Nanostructured materials for photocatalytic hydrogen production. Curr. Opin. Colloid Interface Sci., 14, 4, 260–269, 2009.

75. Fujishima, A., Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37–38, 1972.

76. Zhou, M., Yu, J., Liu, S., Zhai, P., Jiang, L., Effects of calcination temperatures on photocatalytic activity of SnO 2/TiO 2 composite films prepared by an EPD method. J. Hazard. Mater., 154, 1, 1141–1148, 2008.

77. Hattori, A., Tokihisa, Y., Tada, H., Ito, S., Acceleration of Oxidations and Retardation of Reductions in Photocatalysis of a TiO2/SnO2 Bilayer-Type Catalyst. J. Electrochem. Soc., 147, 6, 2279–2283, 2000.

78. Macyk, W. and Kisch, H., Photosensitization of crystalline and amorphous titanium dioxide by platinum (IV) chloride surface complexes. Chem.–Eur. J., 7, 9, 1862–1867, 2001.

79. Shi, J.-W., Zheng, J.-T., Hu, Y., Zhao, Y.-C., Influence of Fe 3+ and Ho 3+ co-doping on the photocatalytic activity of TiO 2. Mater. Chem. Phys., 106, 2, 247–249, 2007.

80. Shi, J.-w., Preparation of Fe (III) and Ho (III) co-doped TiO 2 films loaded on activated carbon fibers and their photocatalytic activities. Chem. Eng. J., 151, 1, 241–246, 2009.

81. Xu, L., Hu, Y.-L., Pelligra, C., Chen, C.-H., Jin, L., Huang, H., Sithambaram, S., Aindow, M., Joesten, R., Suib, S.L., ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity. Chem. Mater., 21, 13, 2875–2885, 2009.

82. Liu, L., Liu, H., Zhao, Y.-P., Wang, Y., Duan, Y., Gao, G., Ge, M., Chen, W., Directed synthesis of hierarchical nanostructured TiO2 catalysts and their morphology-dependent photocatalysis for phenol degradation. Environ. Sci. Technol., 42, 7, 2342–2348, 2008.

83. Bunn, C., The lattice-dimensions of zinc oxide. Proc. Phys. Soc., 47, 5, 835, 1935.

84. Wang, H., Cui, L.-F., Yang, Y., Sanchez Casalongue, H., Robinson, J.T., Liang, Y., Cui, Y., Dai, H., Mn3O4–graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc., 132, 40, 13978–13980, 2010.

85. Fujishima, A., Rao, T.N., Tryk, D.A., Titanium dioxide photocatalysis. J. Photoch. Photobio. C, 1, 1, 1–21, 2000.

86. Jiang, Z., Yang, F., Yang, G., Kong, L., Jones, M.O., Xiao, T., Edwards, P.P., The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange. J. Photochem. Photobiol. A: Chem., 212, 1, 8–13, 2010.

87. Nakata, K., Udagawa, K., Tryk, D.A., Ochiai, T., Nishimoto, S., Sakai, H., Murakami, T., Abe, M., Fujishima, A., Fabrication of micro-patterned TiO 2 thin films incorporating Ag nanoparticles. Mater. Lett., 63, 18, 1628–1630, 2009.

88. Nishimoto, S., Kubo, A., Nohara, K., Zhang, X., Taneichi, N., Okui, T., Liu, Z., Nakata, K., Sakai, H., Murakami, T., TiO 2-based superhydrophobic–superhydrophilic patterns: Fabrication via an ink-jet technique and application in offset printing. Appl. Surf. Sci., 255, 12, 6221–6225, 2009.

89. Rastogi, R. and Sharma, S., 2-Aminobenzimidazoles in Organic Syntheses. Synthesis, 861, 1983.

90. Berton, G.W., Selective monoacetylation of unsymmetrical diols catalyzed by silica gel-supported sodium hydrogen sulfate. J. Org. Chem., 62, 8952–8954, 1997.

91. Heravi, M.M. and Motamedi, R., Rapid synthesis of some new propanol derivatives analogous to fluconazole under microwave irradiation in solventless system. Heterocycl. Commun., 11, 19–22, 2005.

92. Subash, B., Krishnakumar, B., Swaminathan, M., Shanthi, M., ZnS–Ag–ZnO as an excellent UV-light-active photocatalyst for the degradation of AV 7, AB 1, RR 120, and RY 84 dyes: synthesis, characterization, and catalytic applications. Ind. Eng. Chem. Res., 53, 12953–12963, 2014.

93. Kundu, S., A facile route for the formation of shape-selective ZnO nanoarchitectures with superior photo-catalytic activity. Colloids Surf. A: Physiochem. Eng. Asp., 446, 199–212, 2014.

94. Suresh, S., Karthikeyan, S., Jayamoorthy, K., Spectral investigations to the effect of bulk and nano ZnO on peanut plant leaves. Karbala Int. J. Mod. Sci., 2, 2, 69–77, 2016.

95. Pour, Z.S. and Ghaemy, M., Fabrication and characterization of superparamagnetic nanocomposites based on epoxy resin and surface-modified γ-Fe 2 O 3 by epoxide functionalization. J. Mater. Sci., 49, 4191–4201, 2014.

96. Escher, W., Brunschwiler, T., Michel, B., and Poulikakos, D. Experimental Investigation of an Ultrathin Manifold Microchannel Heat Sink for Liquid-Cooled Chips. ASME. J. Heat Transfer., 132, 081402, 2010

97. Escher, W., Michel, B., Poulikakos, D., Efficiency of optimized bifurcating tree-like and parallel microchannel networks in the cooling of electronics. Int. J. Heat Mass Transf., 52, 1421–1430, 2009.

98. Tuckerman, D.B. and Pease, R.F.W., IIIB-8 implications of high performance heat sinking for electron devices. IEEE Trans. Electron Devices, 28, 1230–1231, 1981.

99. Wang, Zhou, Peng, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. J. Heat Mass Transf., 46, 14, 2665–2672, 2003.

100. Keblinski, Phillpot, Choi, Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf., 45, 4, 855–863, 2002.

101. Patel, K., Kapoor, S., Dave, D.P., Mukherjee, T., Synthesis of Au, Au/Ag, Au/Pt and Au/Pd nanoparticles using the microwave-polyol method. Res. Chem. Intermed., 32, 103, 2006.

102. Zhao, P.X., Li, N., Astruc, D., State of the art in gold nanoparticle synthesis. Coord. Chem. Rev., 257, 638–665, 2013.

103. Sun, Y.G. and Xia, Y.N., Shape-controlled synthesis of gold and silver nanoparticles. Science, 298, 2176–2179, 2002.

104. Lee, W., Scholz, R., Nielsch, K., Gösele, U., A Template-Based Electrochemical Method for the Synthesis of Multisegmented Metallic Nanotubes. Angew. Chem., 117, 6204–6208, 2005.

105. Davar, F., Loghman-Estarki, M.R., Salavati-Niasari, M., Mazaheri, M., Controllable synthesis of covellite nanoparticles via thermal decomposition method. J. Clust. Sci., 27, 593–603, 2016.

106. Wang, H., Xu, J.Z., Zhu, J.J., Chen, H.Y., Preparation of CuO nanoparticles by microwave irradiation. J. Cryst. Growth, 244, 88–94, 2002.

107. Chen, W.X., Lee, J.Y., Liu, Z., Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications. Chem. Commun., 21, 2588–2589, 2002.

108. Sreeju, N., Rufus, A., Philip, D., Microwave-assisted rapid synthesis of copper nanoparticles with exceptional stability and their multifaceted applications. J. Mol. Liq., 221, 1008–1021, 2016.

109. Qin, Y., Ji, X., Jing, J., Liu, H., Wu, H., Yang, W., Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf. A, 372, 172–176, 2010.

110. Weare, W.W., Reed, S.M., Warner, M.G., Hutchison, J.E., Improved synthesis of small (d core≈ 1.5 nm) phosphine-stabilized gold nanoparticles. J. Am. Chem. Soc., 122, 12890–12891, 2000.

111. Schmid, G., Pfeil, R., Boese, R., Bandermann, F., Meyer, S., Calis, G.H.M., van der Velden, Au55[P(C6H5)3]12CI6 — ein Goldcluster ungewöhnlicher Größe, J.W.A., Chem. Ber., 114, 3634–3642, 1981.

112. Prasher, Bhattacharya, Phelan, Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys. Rev. Lett., 94, 2, 025901, 2005.

113. Evans, Fish, Keblinski, Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl. Phys. Lett., 88, 9, 093116–3, 2006.

114. Keblinski, Prasher, Eapen, Thermal conductance of nanofluids: is the controversy over? J. Nanopart. Res., 10, 7, 1089–1097, 2008.

115. Diallo, S.O., Pore-size dependence and characteristics of water diffusion in slitlike micropores. Phys. Rev. E, 92, 012312, 2015.

116. Qin, Z. and Buehler, M.J., Nonlinear viscous water at nanoporous two-dimensional interfaces resists high-speed flow through cooperativity. Nano Lett., 15, 3939–44, 2015.

117. Osti, N., Coté, A., Mamontov, E., Ramirez-Cuesta, A., Wesolowski, D., Diallo, S., Characteristic features of water dynamics in restricted geometries investigated with quasi-elastic neutron scattering. Chem. Phys., 465, 1–8, 2016.

118. Turanov, A. and Tolmachev, Y.V., Heat-and mass-transport in aqueous silica nanofluids. Heat Mass Transfer, 45, 1583–8, 2009.

119. Khan, S.H., Matei, G., Patil, S., Hoffmann, P.M., Dynamic solidification in nanoconfined water films. Phys. Rev. Lett., 105, 106101, 2010.

120. Vasu, V., Krishna, K.R., Kumar, A.C.S., Analytical prediction of thermophysical properties of fluids embedded with nanostructured materials. Int. J. Nanopart., 1, 1, 32–49, 2008.

121. Prasher, R., Evans, W., Meakin, P., Fish, J., Phelan, P., Keblinski, P., Effect of aggregation on thermal conduction in colloidal nanofluids. Appl. Phys. Lett., 89, 14, 143119-1–143119-3, 2006.

122. Prasher, R., Phelan, P.E., Bhattacharya, P., Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett., 6, 7, 1529–1534, 2006.

123. Malik, R., Rana, P.S., Tomer, V.K., Chaudhary, V., Nehra, S.P., Duhan, S., Nano gold supported on ordered mesoporous WO3/SBA-15 hybrid nanocomposite 24 Metal Oxide Nanocomposites for oxidative decolorization of Azo dye. Microporous Mesoporous Mater., 225, 245–254, 2016.

124. Ghaly, E., Ananthashankar, R., Alhattab, M., Ramakrishnan, V.V., Production, characterization and treatment of textile effluents: a critical review. J. Chem. Eng. Process. Technol., 5, 1, 2014.

125. Malik, R., Rana, P.S., Tomer, V.K., Chaudhary, V., Nehra, S.P., Duhan, S., Visible light-driven mesoporous Au-TiO2/SiO2 photocatalysts for advanced oxidation process. Ceram. Int., 42, 10892–10901, 2016.

126. Khan, Z., Chetia, T.R., Vardhaman, A.K., Barpuzary, D., Sastri, C.V., Qureshi, M., Visible light assisted photocatalytic hydrogen generation and organic dye degradation by CdS–metal oxide hybrids in presence of grapheme oxide. RSC Adv., 2, 12122, 2012.

127. Malik, R., Tomer, V.K., Chaudhary, V., Dahiya, M.S., Nehra, S.P., Rana, P.S., Duhan, S., Microflower assembly of porous Au loaded TiO2/SnO2 nanohybrids as highly efficient visible light photocatalyst and selective VOCs sensor. ChemistrySelect (Wiley), 1, 3247–3258, 2016.

128. Giwa, P.O., Nkeonye, K.A., Bello, K.A., Kolawole, Photocatalytic decolourization and degradation of basic blue 41 using TiO2 nanoparticles. J. Environ. Prot., 3, 1, 2012.

129. Buthelezi, S.P., Olaniran, A.O., Pillay, B., Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates. Molecules, 17, 14260, 2012.

130. Pereira, L, and Alves M., Dyes—environmental impact and remediation. Environmental protection strategies for sustainable development. Springer, Dordrecht, 111–162, 2012.

131. Tahir, U., Yasmin, A., Khan, U.H., Phytoremediation: potential flora for synthetic dyestuff metabolism. J. King Saud. Univ. Sci., 28, 119–130, 2016.

132. Hunger, K., Industrial dyes: chemistry, properties, applications, Wiley, Frankfurt, 2008.

133. Needles, H.L., Textile fibers, dyes, finishes and processes, Noyes, Jersey, 1986.

134. Singh, B. and Sharma, N., Mechanistic implications of plastic degradation. Polym. Degrad. Stab., 93, 561, 2008.

135. Duhan, S., Dehiya, B.S., Tomer, V., Microstructure and photo-catalytic dye degradation of silver–silica nano composites synthesized by sol–gel method. Adv. Mater. Lett., 4, 317–322, 2013.

136. Duhan, S. and Tomer, V.K., Advance Electronics: Looking Beyond Silicon, in: Advanced Energy Materials, pp. 295–326, Wiley-Scrivener, U.S.A, 2014.

137. Tomer, V.K., Thangaraj, N., Gahlot, S., Kailasam, K., Cubic mesoporous Ag@ CN: A high performance humidity sensor. Nanoscale, 8, 19794–19803, 2016.

138. Malik, R., Tomer, V.K., Chaudhary, V., Dahiya, M.S., Nehra, S.P., Rana, P.S., Duhan, S., Ordered mesoporous In-(TiO2/WO3) nanohybrid: An ultrasensitive n-butanol sensor. Sens. Actuators B: Chem., 239, 364–373, 2017.

139. Tomer, V.K. and Duhan, S., Ordered mesoporous Ag-doped TiO2/SnO2 nanocomposite based highly sensitive and selective VOC sensors. J. Mater. Chem. A, 4, 1033–1043, 2016.

140. Tomer, V.K. and Duhan, S., Nano titania loaded mesoporous silica: preparation and application as high performance humidity sensor. Sens. Actuators B: Chem., 220, 192–200, 2015.

141. Naderi, M. and Danesh-Shahraki, A., Nano fertilizers and their roles in sustainable agriculture. Int. J. Agric. Crop Sci., 5, 19, 2229–2232, 2013.

142. Khot, L.R., Sankaran, S., Maja, J.M., Ehsani, R., Schuster, E.W., Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot., 35, 64–70, 2012.

143. Nasiri, A., Shariaty-Niasar, M.S.-N., Akbari, Z., Synthesis of LDPE/nano TiO2nanocomposite for 792 packaging applications. Int. J. Nanosci. Nanotechnol., 8, 165–170, 2012.

144. Gumiero, M., Peressini, D., Pizzariello, A., Sensidoni, A., Iacumin, L., Comi, G., Toniolo, R., Effect of TiO2 photocatalytic activity in a HDPE based food packaging on the structural and microbiological stability of a short-ripened cheese. Food Chem., 138, 1633–1640, 2013.

145. Luo, Z., Qin, Y., Ye, Q., Effect of nano-TiO2-LDPE packaging on microbiological and physicochemical quality of Pacific white shrimp during chilled storage. Int. J. Food Sci. Technol., 50, 1567–1573, 2015.

146. Cerrada, M.L., Serrano, C., Sánchez-Chaves, M., Fernández-García, M., Fernández-Martín, F., de Andrés, A., 620Riobóo, R.J.J., Kubacka, A., Ferrer, M., Fernández-García, M., Self-sterilized EVOH-TiO2621 nanocomposites: Interface effects on biocidal properties. Adv. Funct. Mater., 18, 1949–1960, 2008.

147. Kim, D.K., Mikhaylova, M., Wang, F.H., Kehr, J., Bjelke, B., Zhang, Y., Tsakalakos, T., Muhammed, M., Starch-coated superparamagnetic nanoparticles as MR contrast agents. Chem. Mater., 15, 4343–4351, 2003.

148. Wang, W. and Zhang, Z., Hydrothermal synthesis and characterization of carbohydrate microspheres coated with magnetic nanoparticles. J. Dispers. Sci. Technol., 28, 557–561, 2007.

149. Haldorai, Y. and Shim, J.-J., Multifunctional chitosan copper oxide hybrid material: photocatalytic and antibacterial activities. Int. J. Photoenergy, 245646, 2013.

150. Yang, Y., Li, Y.-Q., Fu, S.-Y., Xiao, H.-M., Transparent and light-emitting epoxy nanocomposites containing ZnO quantum dots as encapsulating materials for solid state lighting. J. Phys. Chem. C, 112, 10553–10558, 2008.

151. Son, D.-I., Park, D.-H., Choi, W.K., Cho, S.-H., Kim, W.-T., Kim, T.W., Carrier transport inflexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methac-rylate) polymer layer. Nanotechnology, 20, 195203, 2009.

152. Skorenko, K., Bernier, R.T., Liu, J., Galusha, B., Goroleski, F., Hughes, B.P., Bernier, W.E., Jones, W.E., Thermal stability of ZnO nanoparticle bound organic chromophores. Dyes Pigm., 131, 69–75, 2016.

153. Jo, Y.J., Choi, E.Y., Choi, N.W., Kim, C.K., Antibacterial and hydrophilic characteristics of poly(ether sulfone) composite membranes containing zinc oxide nanoparticles grafted with hydrophilic polymers. Ind. Eng. Chem. Res., 55, 7801–7809, 2016.

154. Kwak, S.-Y., Kim, S.H., Kim, S.S., Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling: preparation and characterization of TiO2nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane. Environ. Sci. Technol., 35, 2388–2394, 2001.

155. Wu, L. and Ritchie, S., Enhanced dechlorination of trichloroethylene by membrane-sup-ported Pd-coated iron nanoparticles. Environ. Prog., 27, 218–224, 2008.

156. Teli, S.B., Molina, S., Sotto, A., Calvo, E.G.A., Abajob, J.D., Fouling resistant poly-sulfone–PANI/TiO2 ultrafiltration nanocomposite membranes. Ind. Eng. Chem. Res., 52, 9470–9479, 2013.

157. Yu, Z., Liu, X., Zhao, F., Liang, X., Tian, Y., Fabrication of a low-cost nano-SiO2/PVCcomposite ultrafiltration membrane and its antifouling performance. J. Appl. Polym. Sci., 132, 1–11, 2015.

158. Feng, J., Chen, J., Wang, N., Li, J., Shi, J., Yan, W., Enhanced adsorption capacityof polypyrrole/TiO2 composite modified by carboxylic acid with hydroxyl group. RSC Adv., 6, 42572–42580, 2016.

159. Anand, K., Singh, O., Singh, M.P., Kaur, J., Singh, R.C., Hydrogen sensor based on graphene/ZnO nanocomposite. Sens. Actuators B, 195, 409–415, 2014.

160. Gusain, Rashi, et al. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Adv. Colloid Interface Sci. 272, 102009, 2019.

161. Askari, H., et al., Piezoelectric and triboelectric nanogenerators: Trends and impacts. Nano Today, 22, 10–13, 2018.

162. Wang, Z.L., Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire. Arrays. Science, 312, 242–246, 2006.

1 * Corresponding author: visagam143@gmail.com

Metal Oxide Nanocomposites

Подняться наверх