Читать книгу Halogen Bonding in Solution - Группа авторов - Страница 45
References
Оглавление1 1 Guo, N., Maurice, R., Teze, D. et al. (2018). Nat. Chem. 10: 1–7.
2 2 Desiraju, G.R., Ho, P.S., Kloo, L. et al. (2013). Pure Appl. Chem. 85: 1711–1713.
3 3 Von, P., Schleyer, R., and West, R. (1959). J. Am. Chem. Soc. 81: 3164–3165.
4 4 Ramasubbu, N., Parthasarathy, R., and Murray‐Rust, P. (1986). J. Am. Chem. Soc. 108: 4308–4314.
5 5 Brinck, T., Murray, J.S., and Politzer, P. (1992). Int. J. Quantum Chem. 44: 57–64.
6 6 Murray, J.S., Paulsen, K., and Politzer, P. (1994). Proc. Indian Acad. Sci. 106: 267–275.
7 7 Cavallo, G., Metrangolo, P., Milani, R. et al. (2016). Chem. Rev. 116: 2478–2601.
8 8 Clark, T., Hennemann, M., Murray, J.S., and Politzer, P. (2007). J. Mol. Model. 13: 291–296.
9 9 Alvarez, S. (2013). Dalton Trans. 42: 8617.
10 10 Shannon, R.D. (1976). Acta Crystallogr. Sect. A 32: 751–767.
11 11 Metrangolo, P., Meyer, F., Pilati, T. et al. (2008). Angew. Chem. Int. Ed. 47: 6114–6127.
12 12 Priimagi, A., Cavallo, G., Metrangolo, P., and Resnati, G. (2013). Acc. Chem. Res. 46: 2686–2695.
13 13 Riel, A.M.S., Jessop, M.J., Decato, D.A. et al. (2017). Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 73: 203–209.
14 14 Riel, A.M.S., Rowe, R.K., Ho, E.N. et al. (2019). Acc. Chem. Res. 52: 2870–2880.
15 15 Riel, A.M.S., Decato, D.A., Sun, J. et al. (2018). Chem. Sci. 9: 5828–5836.
16 16 Carlsson, A.‐C.C., Scholfield, M.R., Rowe, R.K. et al. (2018). Biochemistry 57: 4135–4147.
17 17 Bent, H.A. (1968). Chem. Rev. 68: 587–648.
18 18 Lu, Y.X., Zou, J.W., Yu, Q.S. et al. (2007). Chem. Phys. Lett. 449: 6–10.
19 19 Laurence, C., Graton, J., and Gal, J.F. (2011). J. Chem. Educ. 88: 1651–1657.
20 20 Karan, N.K. and Arunan, E. (2004). J. Mol. Struct. 688: 203–205.
21 21 Raghavendra, B. and Arunan, E. (2007). J. Phys. Chem. A 111: 9699–9706.
22 22 Urinda, S., Kundu, D., and Majee, A. (2009). Heteroat. Chem. 20: 232–234.
23 23 Imakubo, T., Tajima, N., Shirahata, T. et al. (2003). Synth. Met. 135–136: 601–602.
24 24 Laurence, C., Graton, J., Berthelot, M., and El Ghomari, M.J. (2011). Chem. Eur. J. 17: 10431–10444.
25 25 Lieffrig, J., Jeannin, O., Frąckowiak, A. et al. (2013). Chem. ‐Eur. J. 19: 14804–14813.
26 26 Cametti, M., Raatikainen, K., Metrangolo, P. et al. (2012). Org. Biomol. Chem. 10: 1329–1333.
27 27 Gilday, L.C., Lang, T., Caballero, A. et al. (2013). Angew. Chem. Int. Ed. 52: 4356–4360.
28 28 Zapata, F., Caballero, A., White, N.G. et al. (2012). J. Am. Chem. Soc. 134: 11533–11541.
29 29 Walter, S.M., Kniep, F., Rout, L. et al. (2012). J. Am. Chem. Soc. 134: 8507–8512.
30 30 Kassl, C.J., Swenson, D.C., and Pigge, F.C. (2015). Cryst. Growth Des. 15: 4571–4580.
31 31 Sabater, P., Zapata, F., Caballero, A. et al. (2016). J. Org. Chem. 81: 7448–7458.
32 32 Carlsson, A.‐C.C., Gräfenstein, J., Budnjo, A. et al. (2012). J. Am. Chem. Soc. 134: 5706–5715.
33 33 Carlsson, A.‐C.C., Gräfenstein, J., Laurila, J.L. et al. (2012). Chem. Commun. 48: 1458–1460.
34 34 Carlsson, A.‐C.C., Uhrbom, M., Karim, A. et al. (2013). CrystEngComm 15: 3087.
35 35 Rosenfeld, L. (2000). J. Chem. Educ. 77: 984.
36 36 Colin, M. (1814). Ann. Chim. 91: 252–272.
37 37 Guthrie, F. (1863). J. Chem. Soc. 16: 239–244.
38 38 Remsen, I. and Norris, J.F. (1896). Am. Chem. J. 18: 90–95.
39 39 Rhoussopoulos, O. (1883). Ber. Dtsch. Chem. Ges. 16: 202–203.
40 40 Lachman, A. (1903). J. Am. Chem. Soc. 25: 50–55.
41 41 Benesi, H.A. and Hildebrand, J.H. (1948). J. Am. Chem. Soc. 70: 2832–2833.
42 42 Mulliken, R.S. (1950). J. Am. Chem. Soc. 72: 600–608.
43 43 Mulliken, R.S. (1966) Spectroscopy, molecular orbitals, and chemical bonding. Nobel Lecture.
44 44 Hassel, O., Hvoslef, J., Vihovde, E.H., and Sörensen, N.A. (1954). Acta Chem. Scand. 8: 873–873.
45 45 Hassel, O., Strømme, K.O., Haraldsen, H. et al. (1958). Acta Chem. Scand. 12: 1146–1146.
46 46 Hassel, O., Strømme, K.O., Hammarsten, E. et al. (1959). Acta Chem. Scand. 13: 1781–1786.
47 47 Hassel, O., Strømme, K.O., Stenhagen, E. et al. (1959). Acta Chem. Scand. 13: 275–280.
48 48 Hassel, O. (1970) Structural aspects of interatomic charge‐transfer bonding. Nobel Lecture.
49 49 Dumas, J.M., Gomel, M., and Guerin, M. (2010). Patai Suppl. D, Chem. Halides Pseudo‐Halides Azides 2: 985–1020.
50 50 Schulz, N., Sokkar, P., Engelage, E. et al. (2018). Chem. Eur. J. 24: 3464–3473.
51 51 Legon, A.C. (1998). Chem. Eur. J.: 4, 1890–1897.
52 52 Legon, A.C. (1999). Angew. Chem. Int. Ed. 38: 2686–2714.
53 53 Weiss, R., Rechinger, M., Hampel, F., and Wolski, A. (1995). Angew. Chem. Int. Ed. 34: 441–443.
54 54 Weiss, R., Miess, G.‐E., Haller, A., and Reinhardt, W. (1986). Angew. Chem. Int. Ed. 25: 103–104.
55 55 Weiss, R., Rechinger, M., and Hampel, F. (1994). Angew. Chem. Int. Ed. 33: 893–895.
56 56 Metrangolo, P., Neukirch, H., Pilati, T., and Resnati, G. (2005). Acc. Chem. Res. 38: 386–395.
57 57 Metrangolo, P. and Resnati, G. (2001). Chem. Eur. J. 7: 2511–2519.
58 58 Li, B., Zang, S.Q., Wang, L.Y., and Mak, T.C.W. (2016). Coord. Chem. Rev. 308: 1–21.
59 59 Fourmigué, M. (2009). Curr. Opin. Solid State Mater. Sci. 13: 36–45.
60 60 Ding, X., Tuikka, M., and Haukk, M. (2012). Recent Advances in Crystallography, vol. i, 13. InTech.
61 61 Christopherson, J.C., Topić, F., Barrett, C.J., and Friščić, T. (2018). Cryst. Growth Des. 18: 1245–1259.
62 62 Mukherjee, A., Tothadi, S., and Desiraju, G.R. (2014). Acc. Chem. Res. 47: 2514–2524.
63 63 Gilday, L.C., Robinson, S.W., Barendt, T.A. et al. (2015). Chem. Rev. 115: 7118–7195.
64 64 Aakeröy, C.B. and Spartz, C.L. (2015). Halogen Bonding I: Impact on Materials Chemistry and Life Sciences (eds. P. Metrangolo and G. Resnati), 155–182. Cham: Springer International Publishing.
65 65 Metrangolo, P., Resnati, G., Pilati, T., and Biella, S. (2008). Halogen Bonding: Fundamentals and Applications (eds. P. Metrangolo and G. Resnati), 105–136. Berlin, Heidelberg: Springer Berlin Heidelberg.
66 66 Murray‐Rust, P. and Motherwell, W.D.S. (1979). J. Am. Chem. Soc. 101: 4374–4376.
67 67 Lommerse, J.P.M., Stone, A.J., Taylor, R., and Allen, F.H. (1996). J. Am. Chem. Soc. 118: 3108–3116.
68 68 Desiraju, G.R. and Parthasarathy, R. (1989). J. Am. Chem. Soc. 111: 8725–8726.
69 69 Pedireddi, V.R., Reddy, D.S., Goud, B.S. et al. (1994). J. Chem. Soc., Perkin Trans. 2: 2353.
70 70 Chopra, D. (2012). Cryst. Growth Des. 12: 541–546.
71 71 Präsang, C., Whitwood, A.C., and Bruce, D.W. (2009). Cryst. Growth Des. 9: 5319–5326.
72 72 Aakeröy, C.B., Baldrighi, M., Desper, J. et al. (2013). Chem. Eur. J. 19: 16240–16247.
73 73 Etter, M.C. (1990). Acc. Chem. Res. 23: 120–126.
74 74 Aakery, C.B., Beatty, A.M., and Helfrich, B.A. (2001). Angew. Chem. Int. Ed. 40: 3240–3242.
75 75 Aakeröy, C.B., Wijethunga, T.K., Desper, J., and Daković, M. (2016). Cryst. Growth Des. 16: 2662–2670.
76 76 Aakeröy, C.B., Spartz, C.L., Dembowski, S. et al. (2015). IUCrJ 2: 498–510.
77 77 Aakeröy, C.B., Chopade, P.D., and Desper, J. (2011). Cryst. Growth Des. 11: 5333–5336.
78 78 Aakeröy, C.B., Chopade, P.D., Ganser, C., and Desper, J. (2011). Chem. Commun. 47: 4688–4690.
79 79 Tothadi, S. and Desiraju, G.R. (2013). Chem. Commun. 49: 7791–7793.
80 80 Voth, A.R., Khuu, P., Oishi, K., and Ho, P.S. (2009). Nat. Chem. 1: 74–79.
81 81 Vasylyeva, V., Nayak, S.K., Terraneo, G. et al. (2014). CrystEngComm 16: 8102–8105.
82 82 Takemura, A., McAllister, L.J., Hart, S. et al. (2014). Chem. Eur. J. 20: 6721–6732.
83 83 Decato, D.A. and Berryman, O.B. (2018). Simultaneous halogen and hydrogen bonding to carbonyl and thiocarbonyl functionality. In: Multi‐Component Crystals, vol. 1 (eds. E. Tiekink and J. Zukerman), 272–288. Berlin, Boston: De Gruyter.
84 84 Logothetis, T.A., Meyer, F., Metrangolo, P. et al. (2004). New J. Chem. 28: 760–763.
85 85 Lisac, K. and Cinčić, D. (2018). CrystEngComm 20: 5955–5963.
86 86 Puttreddy, R., Peuronen, A., Lahtinen, M., and Rissanen, K. (2019). Cryst. Growth Des. 19: 3815–3824.
87 87 Ding, X., Tuikka, M., Rissanen, K., and Haukka, M. (2019). Crystals 9: 319.
88 88 Puttreddy, R., von Essen, C., and Rissanen, K. (2018). Eur. J. Inorg. Chem. 2018: 2393–2398.
89 89 Smart, P., Bejarano‐Villafuerte, Á., and Brammer, L. (2013). CrystEngComm 15: 3151.
90 90 Brammer, L., Mínguez Espallargas, G., and Adams, H. (2003). CrystEngComm 5: 343–345.
91 91 Mínguez Espallargas, G., Zordan, F., Arroyo Marín, L. et al. (2009). Chem. Eur. J. 15: 7554–7568.
92 92 Zordan, F., Brammer, L., and Sherwood, P. (2005). J. Am. Chem. Soc. 127: 5979–5989.
93 93 Libri, S., Jasim, N.A., Perutz, R.N., and Brammer, L. (2008). J. Am. Chem. Soc. 130: 7842–7844.
94 94 Smith, D.A., Brammer, L., Hunter, C.A., and Perutz, R.N. (2014). J. Am. Chem. Soc. 136: 1288–1291.
95 95 Ormond‐Prout, J.E., Smart, P., and Brammer, L. (2012). Cryst. Growth Des. 12: 205–216.
96 96 Carter, K.P., Kalaj, M., Surbella, R.G. et al. (2017). Chem. Eur. J. 23: 15355–15369.
97 97 Carter, K.P., Kalaj, M., Kerridge, A., and Cahill, C.L. (2018). CrystEngComm 20: 4916–4925.
98 98 Lieffrig, J., Jeannin, O., Guizouarn, T. et al. (2012). Cryst. Growth Des. 12: 4248–4257.
99 99 Lieffrig, J., Jeannin, O., Shin, K.‐S. et al. (2012). Crystals 2: 327–337.
100 100 Espallargas, G.M., Recuenco, A., Romero, F.M. et al. (2012). CrystEngComm 14: 6381.
101 101 Pang, X., Zhao, X.R., Wang, H. et al. (2013). Cryst. Growth Des. 13: 3739–3745.
102 102 Boubekeur, K., Syssa‐Magalé, J.‐L., Palvadeau, P., and Schöllhorn, B. (2006). Tetrahedron Lett. 47: 1249–1252.
103 103 Clemente‐Juan, J.M., Coronado, E., Mínguez Espallargas, G. et al. (2010). CrystEngComm 12: 2339.
104 104 Troff, R.W., Mäkelä, T., Topić, F. et al. (2013). Eur. J. Org. Chem. 2013: 1617–1637.
105 105 Makhotkina, O., Lieffrig, J., Jeannin, O. et al. (2015). Cryst. Growth Des. 15: 3464–3473.
106 106 Raatikainen, K. and Rissanen, K. (2011). CrystEngComm 13: 6972.
107 107 Mavračić, J., Cinčić, D., and Kaitner, B. (2016). CrystEngComm 18: 3343–3346.
108 108 Stilinović, V., Horvat, G., Hrenar, T. et al. (2017). Chem. Eur. J. 23: 5244–5257.
109 109 Eraković, M., Cinčić, D., Molčanov, K., and Stilinović, V. (2019). Angew. Chem. Int. Ed. 58: 15702–15706.
110 110 Caronna, T., Liantonio, R., Logothetis, T.A. et al. (2004). J. Am. Chem. Soc. 126: 4500–4501.
111 111 Sinnwell, M.A., Blad, J.N., Thomas, L.R., and MacGillivray, L.R. (2018). IUCrJ 5: 491–496.
112 112 Sinnwell, M.A. and MacGillivray, L.R. (2016). Angew. Chem. Int. Ed. 55: 3477–3480.
113 113 DeCicco, R.C., Luo, L., and Goroff, N.S. (2019). Acc. Chem. Res. 52: 2080–2089.
114 114 Cinčić, D., Friščić, T., and Jones, W. (2008). J. Am. Chem. Soc. 130: 7524–7525.
115 115 Cavallo, G., Metrangolo, P., Pilati, T. et al. (2010). Chem. Soc. Rev. 39: 3772–3783.
116 116 Metrangolo, P., Pilati, T., Terraneo, G. et al. (2009). CrystEngComm 11: 1187–1196.
117 117 Xu, Y., Gabidullin, B., and Bryce, D.L. (2019). J. Phys. Chem. A 123: 6194–6209.
118 118 Szell, P.M.J., Grébert, L., and Bryce, D.L. (2019). Angew. Chem. Int. Ed. 58: 13479–13485.
119 119 Shankar, S., Chovnik, O., Shimon, L.J.W. et al. (2018). Cryst. Growth Des. 18: 1967–1977.
120 120 Syssa‐Magalé, J.‐L., Boubekeur, K., Leroy, J. et al. (2014). CrystEngComm 16: 10380–10384.
121 121 Titi, H.M., Nandi, G., Tripuramallu, B.K., and Goldberg, I. (2015). Cryst. Growth Des. 15: 3063–3075.
122 122 Catalano, L., Perez‐Estrada, S., Wang, H.‐H. et al. (2017). J. Am. Chem. Soc. 139: 843–848.
123 123 Simonov, S., Zorina, L., Wzietek, P. et al. (2018). Nano Lett. 18: 3780–3784.
124 124 Müller, M., Albrecht, M., Gossen, V. et al. (2010). Chem. Eur. J. 16: 12446–12453.
125 125 García, M.D., Martí‐Rujas, J., Metrangolo, P. et al. (2011). CrystEngComm 13: 4411.
126 126 Peuronen, A., Rinta, H., and Lahtinen, M. (2015). CrystEngComm 17: 1736–1740.
127 127 Szell, P.M.J., Gabriel, S.A., Caron‐Poulin, E. et al. (2018). Cryst. Growth Des. 18: 6227–6238.
128 128 Widner, D.L., Knauf, Q.R., Merucci, M.T. et al. (2014). J. Org. Chem. 79: 6269–6278.
129 129 Politzer, P., Lane, P., Concha, M.C. et al. (2007). J. Mol. Model. 13: 305–311.
130 130 Politzer, P., Murray, J.S., and Clark, T. (2013). Phys. Chem. Chem. Phys. 15: 11178.
131 131 Frontera, A., Gamez, P., Mascal, M. et al. (2011). Angew. Chem. Int. Ed. 50: 9564–9583.
132 132 Wolters, L.P., Schyman, P., Pavan, M.J. et al. (2014). Wiley Interdiscip. Rev. Comput. Mol. Sci. 4: 523–540.
133 133 Kolář, M.H. and Hobza, P. (2016). Chem. Rev. 116: 5155–5187.
134 134 Sedlak, R., Kolář, M.H., and Hobza, P. (2015). J. Chem. Theor. Comput. 11: 4727–4732.
135 135 Nyburg, S.C. and Faerman, C.H. (1985). Acta Crystallogr. Sect. B Struct. Sci. 41: 274–279.
136 136 Hathwar, V.R. and Guru Row, T.N. (2011). Cryst. Growth Des. 11: 1338–1346.
137 137 Chopra, D. (2012). J. Phys. Chem. A 116: 9791–9801.
138 138 Murray, J.S. and Politzer, P. (2011). Wiley Interdiscip. Rev. Comput. Mol. Sci. 1: 153–163.
139 139 Riley, K.E., Murray, J.S., Fanfrlík, J. et al. (2011). J. Mol. Model. 17: 3309–3318.
140 140 Politzer, P. and Murray, J.S. (2017). Crystals 7: 212.
141 141 Brinck, T., Murray, J.S., and Politzer, P. (1993). Int. J. Quantum Chem. 48: 73–88.
142 142 Murray, J.S., Macaveiu, L., and Politzer, P. (2014). J. Comput. Sci. 5: 590–596.
143 143 Riley, K.E., Murray, J.S., Politzer, P. et al. (2009). J. Chem. Theor. Comput. 5: 155–163.
144 144 Aakeröy, C.B., Wijethunga, T.K., and Desper, J. (2014). J. Mol. Struct. 1072: 20–27.
145 145 Sarwar, M.G., Dragisic, B., Salsberg, L.J. et al. (2010). J. Am. Chem. Soc. 132: 1646–1653.
146 146 Beale, T.M., Chudzinski, M.G., Sarwar, M.G., and Taylor, M.S. (2013). Chem. Soc. Rev. 42: 1667–1680.
147 147 Huber, S.M., Jimenez‐Izal, E., Ugalde, J.M., and Infante, I. (2012). Chem. Commun. 48: 7708.
148 148 Palusiak, M. (2010). J. Mol. Struct.‐THEOCHEM 945: 89–92.
149 149 Wolters, L.P. and Bickelhaupt, F.M. (2012). ChemistryOpen 1: 96–105.
150 150 Alkorta, I., Rozas, I., and Elguero, J. (1998). J. Phys. Chem. A 102: 9278–9285.
151 151 Rosokha, S.V., Stern, C.L., and Ritzert, J.T. (2013). Chem. Eur. J. 19: 8774–8788.
152 152 Rosokha, S.V., Stern, C.L., Swartz, A., and Stewart, R. (2014). Phys. Chem. Chem. Phys. 16: 12968–12979.
153 153 Riley, K.E. and Hobza, P. (2013). Phys. Chem. Chem. Phys. 15: 17742.
154 154 Eskandari, K. and Zariny, H. (2010). Chem. Phys. Lett. 492: 9–13.
155 155 Riley, K.E. and Hobza, P. (2008). J. Chem. Theor. Comput. 4: 232–242.
156 156 Jeziorski, B., Moszynski, R., and Szalewicz, K. (1994). Chem. Rev. 94: 1887–1930.
157 157 Williams, H.L. and Chabalowski, C.F. (2001). J. Phys. Chem. A 105: 646–659.
158 158 Valadares, N.F., Salum, L.B., Polikarpov, I. et al. (2009). J. Chem. Inf. Model. 49: 2606–2616.
159 159 Auffinger, P., Hays, F.A., Westhof, E., and Ho, P.S. (2004). Proc. Natl. Acad. Sci. USA 101: 16789–16794.
160 160 Xu, Z., Yang, Z., Liu, Y. et al. (2014). J. Chem. Inf. Model. 54: 69–78.
161 161 Ford, M.C. and Ho, P.S. (2016). J. Med. Chem. 59: 1655–1670.
162 162 Rezac, J. and Hobza, P. (2011). Chem. Phys. Lett. 506: 286–289.
163 163 Dobeš, P., Řezáč, J., Fanfrlík, J. et al. (2011). J. Phys. Chem. B 115: 8581–8589.
164 164 Zimmermann, M.O., Lange, A., and Boeckler, F.M. (2015). J. Chem. Inf. Model. 55: 687–699.
165 165 Lu, Y., Shi, T., Wang, Y. et al. (2009). J. Med. Chem. 52: 2854–2862.
166 166 Jorgensen, W.L. and Schyman, P. (2012). J. Chem. Theor. Comput. 8: 3895–3901.
167 167 Case, D.A., Cheatham, T.E., Darden, T. et al. (2005). J. Comput. Chem. 26: 1668–1688.
168 168 Carter, M., Rappé, A.K., and Ho, P.S. (2012). J. Chem. Theor. Comput. 8: 2461–2473.
169 169 Saccone, M. and Catalano, L. (2019). J. Phys. Chem. B 123: 9281–9290.
170 170 Paleos, C.M. and Tsiourvas, D. (2001). Liq. Cryst. 28: 1127–1161.
171 171 Wang, H., Bisoyi, H.K., Urbas, A.M. et al. (2019). Chem. Eur. J. 25: 1369–1378.
172 172 Nguyen, H.L., Horton, P.N., Hursthouse, M.B. et al. (2004). J. Am. Chem. Soc. 126: 16–17.
173 173 Cavallo, G., Terraneo, G., Monfredini, A. et al. (2016). Angew. Chem. Int. Ed. 55: 6300–6304.
174 174 Xu, J., Liu, X., Lin, T. et al. (2005). Macromolecules 38: 3554–3557.
175 175 Priimagi, A., Saccone, M., Cavallo, G. et al. (2012). Adv. Mater. 24: OP345–OP352.
176 176 Vanderkooy, A. and Taylor, M.S. (2015). J. Am. Chem. Soc. 137: 5080–5086.
177 177 McAllister, L.J., Präsang, C., Wong, J.P.W. et al. (2013). Chem. Commun. 49: 3946.
178 178 Saccone, M., Palacio, F.F., Cavallo, G. et al. (2017). Faraday Discuss. 203: 407–422.
179 179 Vapaavuori, J., Siiskonen, A., Dichiarante, V. et al. (2017). RSC Adv. 7: 40237–40242.
180 180 Wang, H., Bisoyi, H.K., Wang, L. et al. (2018). Angew. Chem. Int. Ed. 57: 1627–1631.
181 181 Berger, G., Soubhye, J., and Meyer, F. (2012). Polym. Chem. 19: 3559–3580.
182 182 Cho, C.M., Wang, X., Li, J.J. et al. (2013). Liq. Cryst. 40: 185–196.
183 183 Priimagi, A., Cavallo, G., Forni, A. et al. (2012). Adv. Funct. Mater. 22: 2572–2579.
184 184 Saccone, M., Dichiarante, V., Forni, A. et al. (2015). J. Mater. Chem. C 3: 759–768.
185 185 Vanderkooy, A. and Taylor, M.S. (2017). Faraday Discuss. 203: 285–299.
186 186 Quintieri, G., Saccone, M., Spengler, M. et al. (2018). Nanomaterials 8: 1029.
187 187 Tepper, R., Bode, S., Geitner, R. et al. (2017). Angew. Chem. Int. Ed. 56: 4047–4051.
188 188 Dahlke, J., Tepper, R., Geitner, R. et al. (2018). Polym. Chem. 9: 2193–2197.
189 189 Meazza, L., Foster, J.A., Fucke, K. et al. (2013). Nat. Chem. 5: 42–47.
190 190 Robertson, C.C., Perutz, R.N., Brammer, L., and Hunter, C.A. (2014). Chem. Sci. 5: 4179–4183.
191 191 Houbenov, N., Milani, R., Poutanen, M. et al. (2014). Nat. Commun. 5: 4043.