Remote C-H Bond Functionalizations

Remote C-H Bond Functionalizations
Автор книги: id книги: 1901371     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 17729,1 руб.     (166,96$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Химия Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9783527824144 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

A guide to contemporary advancements in the field of distal C—H functionalization Remote C—H Bond Functionalizations provides a comprehensive overview on the most recent developments in the field of distal C—H functionalization. The text explores how distal C—H functionalization can be applied in various pharmaceutical and agrochemical industries. With contributions from a noted panel of experts on the topic, the book offers a coherent and comprehensive discussion about different strategies. The contributors cover a broad range of topics including C—H functionalization of palladium/norbornene catalysis, ruthenium-catalyzed remote functionalization, the non-directed distal C(sp2)—H, functionalization, transition metal catalyzed distal para-selective C—H functionalization, and much more. The book also includes information on effective strategies as well as the engineering of templates. Throughout the book, the authors lay the foundations for future research. This important book: Contains the most recent research on one of the most important topics in organic synthesis Provides a broad overview on contemporary advancements in the field of distal C—H functionalization Includes deep insights into distal C—H functionalizations Offers information on applications in various industries Written for organic chemists, chemists working with organometallics, and industrial chemists, Remote C—H Bond Functionalizations presents a systematic compilation of the field.

Оглавление

Группа авторов. Remote C-H Bond Functionalizations

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Remote CH Bond Functionalizations. Methods and Strategies in Organic Synthesis

1 Introduction

2 Transition Metal‐Catalyzed Remote meta‐C–H Functionalization of Arenes Assisted by meta‐Directing Templates

2.1 Introduction

2.2 Template‐Assisted meta‐C–H Functionalization. 2.2.1 Toluene Derivatives

2.2.2 Acid Derivatives. 2.2.2.1 Hydrocinnamic Acid Derivatives

2.2.2.2 Phenylacetic Acid Derivatives

2.2.2.3 Benzoic Acid Derivatives

2.2.3 Amine and N‐Heterocyclic Arene Derivatives. 2.2.3.1 Aniline Derivatives

2.2.3.2 Benzylamine Derivatives

2.2.3.3 Phenylethylamine Derivatives

2.2.3.4 N‐Heterocyclic Arene Derivatives

2.2.4 Sulfonic Acid Derivatives

2.2.5 Phenol Derivatives

2.2.6 Alcohol Derivatives

2.2.7 Silane Derivatives

2.2.8 Phosphonate Derivatives

2.3 Mechanistic Considerations

2.4 Conclusion

Abbreviations

References

3 C–H Functionalization of Arenes Under Palladium/Norbornene Catalysis

3.1 Introduction

3.2 Pd(0)‐Catalyzed C–H Functionalization of Aryl (Pseudo)Halides

3.2.1 ortho‐Alkylation. 3.2.1.1 ortho‐Alkylation with Simple Alkyl Halides

3.2.1.2 ortho‐Alkylation with Bifunctional Alkylating Reagents

3.2.1.3 ortho‐Alkylation with Three‐Membered Heterocycles

3.2.2 ortho‐Arylation

3.2.3 ortho‐Acylation and Alkoxycarbonylation

3.2.4 ortho‐Amination

3.2.5 ortho‐Thiolation

3.3 Pd(II)‐Catalyzed C–H Functionalization of Arenes

3.3.1 C2‐Functionalization of Indoles and Pyrroles

3.3.2 meta‐C–H Functionalization of Arenes Containing an ortho‐Directing Group

3.3.3 ortho‐C–H Functionalization of Arylboron Species

3.4 Conclusions and Outlook

Acknowledgments

References

4 Directing Group Assisted meta‐C–H Functionalization of Arenes Aided by Norbornene as Transient Mediator

4.1 Introduction

4.2 meta‐C–H Alkylation of Arenes. 4.2.1 Amide as Directing Group

4.2.2 Sulfonamide as Directing Group

4.3 meta‐C–H Arylation of Arenes. 4.3.1 Amide as Directing Group

4.3.2 Sulfonamide as Directing Group

4.3.3 Tertiary Amine as Directing Group

4.3.4 Tethered Pyridine‐Type Directing Group

4.3.5 Acetal‐Based Quinoline as Directing Group

4.3.6 Free Carboxylic Acid as Directing Group

4.4 meta‐C–H Chlorination of Arenes

4.5 meta‐C–H Amination of Arenes

4.6 meta‐C–H Alkynylation of Arenes

4.7 Enantioselective meta‐C–H Functionalization

4.8 Conclusion

Abbreviations

References

5 Ruthenium‐Catalyzed Remote C–H Functionalizations

5.1 Introduction

5.2 meta‐C–H Functionalizations. 5.2.1 C–H Alkylation

5.2.2 C–H Benzylation

5.2.3 C–H Carboxylation

5.2.4 C–H Acylation

5.2.5 C–H Sulfonylation

5.2.6 C–H Halogenation

5.2.7 C–H Nitration

5.3 para‐C–H Functionalizations

5.4 meta‐/ortho‐C–H Difunctionalizations

5.5 Conclusions

Acknowledgments

References

6 Harnessing Non‐covalent Interactions for Distal C(sp2)–H Functionalization of Arenes

6.1 Introduction

6.2 Non‐covalent Interactions in Metal Catalyzed CH Bond Functionalization

6.3 Overview of Iridium‐Catalyzed Borylation

6.4 Non‐covalent Interactions in Ir‐Catalyzed Borylation

6.5 meta‐Selective Borylation using Non‐covalent Interactions

6.6 para‐Selective Borylation using Non‐covalent Interactions

6.7 Conclusions

References

7 The Non‐directed Distal C(sp2)–H Functionalization of Arenes

7.1 Introduction

7.1.1 Mechanisms

7.2 C–Het Formation

7.2.1 Borylation

7.2.2 Silylation

7.2.3 Amination

7.2.4 Oxygenation

7.2.5 Other CHet Bond Forming Reactions

7.3 CC Bond Forming Reactions

7.3.1 C–H‐Arylation

7.3.2 Alkenylation/Olefination

7.3.3 Cyanation

7.3.4 Other CC Bond Forming Reactions

7.4 Outlook

References

Note

8 Transition Metal Catalyzed Distal para‐Selective C–H Functionalization

8.1 Introduction

8.2 Template Assisted para‐Selective C–H Functionalization

8.2.1 Palladium Catalyzed Methods. 8.2.1.1 Alkenylation

8.2.1.2 Silylation

8.2.1.3 Ketonization

8.2.1.4 Acetoxylation

8.2.1.5 Cyanation

8.2.2 Rhodium Catalyzed Functionalization. 8.2.2.1 Alkenylation

8.3 Steric Controlled and Lewis Acid‐Transition Metal Cooperative Catalysis

8.3.1 Nickel Catalyzed Methods. 8.3.1.1 Alkylation and Alkenylation

8.3.2 Iridium Catalyzed Methods. 8.3.2.1 Borylation

8.4 Non‐covalent Interaction Induced para‐C–H Functionalization. 8.4.1 Di‐polar Induced Methods

8.4.2 Ion‐Pair Induced Methods

8.5 Conclusion and the Prospect

Acknowledgments

References

9 Regioselective C–H Functionalization of Heteroaromatics at Unusual Positions

9.1 Introduction

9.2 Indole

9.2.1 C–H Functionalization at C4 Position

9.2.2 C–H Functionalization at C7 Position

9.2.3 C–H Functionalization at C5 Position

9.2.4 C–H Functionalization at C6 Position

9.3 (Benzo)Thiophene

9.4 Pyrrole

9.5 Pyridine

9.6 Miscellaneous Heteroarenes. 9.6.1 Thiazole

9.6.2 Quinoline

9.7 Conclusion

References

10 Directing Group Assisted Distal C(sp3)–H Functionalization of Aliphatic Substrates

10.1 Introduction

10.2 γ‐C(sp3)–H Functionalization of Aliphatic Acids

10.3 δ‐/ɛ‐C(sp3)H Bond Functionalization of Aliphatic Amines

10.4 γ‐C(sp3)H Bond Functionalization of Aliphatic Ketones or Aldehydes

10.5 γ‐/δ‐C(sp3)H Bond Functionalization of Aliphatic Alcohols

10.6 Conclusions and Outlook

References

11 Radically Initiated Distal C(sp3)–H Functionalization

11.1 Introduction

11.2 Distal C(sp3)–H Functionalization Promoted by Carbon‐Centered Radicals

11.3 Distal C(sp3)–H Functionalization Promoted by Nitrogen‐Centered Radicals

11.3.1 Generation of Nitrogen Radical from NX (X = F, Cl, Br, I) Bond

11.3.2 Generation of Nitrogen Radical from NN Bond

11.3.3 Generation of Nitrogen Radical from NO Bond

11.3.4 Nitrogen Radical Generated Directly from NH Bond

11.4 Oxygen‐Centered Radicals Initiate Distal C(sp3)–H Functionalization

11.4.1 Oxygen Radical Generated from OX (X = N, O) bond

11.4.2 Oxygen Radical Generated Directly from OH Bond

11.5 Summary and Outlook

References

12 Non‐Directed Functionalization of Distal C(sp3)H Bonds

12.1 Introduction

12.1.1 Bond Dissociation Energy (BDE) of CH Bonds

12.1.2 Scope of the Chapter

12.2 Reactions Occurring Without Formation of Metal–Carbon Bonds. 12.2.1 Oxidations with Dioxiranes

12.2.2 Decatungstate‐Photocatalyzed Remote Functionalization

12.2.3 Electrochemical Remote Functionalizations

12.2.4 Carbene Insertion into CH Bonds

12.3 Reactions Occurring via Formation of Metal–Carbon Bonds

12.3.1 Pt‐Based Shilov Chemistry

12.3.2 Rh‐ and Ir‐Catalyzed C–H Borylation of (Functionalized) Alkanes

12.4 Altering Innate Reactivity by Polarity Reversal Strategies

12.4.1 Remote Functionalization of Aliphatic Amines via Quaternary Ammonium Salts

12.4.2 Remote Functionalization of Alcohols and Amides via Hydrogen Bond Interactions

Acknowledgments

References

13 Remote Oxidation of Aliphatic CH Bonds with Biologically Inspired Catalysts

13.1 Introduction. 13.1.1 Bioinspired Catalysis as a Tool for Site Selective CH Bond Oxidation

13.1.2 Typology of Bioinspired Catalysts

13.1.3 Site Selectivity in Aliphatic C–H Oxidation: Basic Considerations

13.2 Innate Substrate Based Aspects Governing Site Selectivity in C–H Oxidations

13.2.1 CH Bond Strength

13.2.2 Electronic Effects

13.2.3 Steric Effects

13.2.4 Directing Groups

13.2.5 Stereoelectronic Effects. 13.2.5.1 Hyperconjugation Effects

13.2.5.2 Strain Release and Torsional Effects

13.2.6 Chirality

13.3 Remote Oxidations by Reversal of Polarity. 13.3.1 Remote Oxidation in Amine Containing Substrates by Protonation of the Amine Site

13.3.2 Remote Oxidation of Amide Containing Substrates by Methylation of the Amide Moiety

13.3.3 Remote Oxidation via Polarity Reversal Exerted by Fluorinated Alcohol Solvents

13.4 Remote Oxidations Guided by Supramolecular Recognition

13.4.1 Lipophilic Interactions

13.4.2 Lipophilic Recognition by Cyclodextrins

13.4.3 Ligand to Metal Coordination

13.4.4 Hydrogen Bonding

13.5 Selective Aliphatic C–H Oxidation at Dicopper Complexes

13.6 Conclusions

References

Index

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by

Debabrata Maiti Srimanta Guin

.....

Source: Modified from Zhang et al. [12].

Subsequently, Maiti and coworkers reported a novel nitrile‐based bifunctional template for meta‐C–H olefination of 3‐phenylpyridines with Pd(acac)2 as the catalyst under similar reaction conditions (Scheme 2.34) [13]. Notably, this nitrile‐based bis‐amide template was easily prepared, which was beneficial for its application in the synthesis of complex molecular structures.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Remote C-H Bond Functionalizations
Подняться наверх