Читать книгу Machine Vision Inspection Systems, Machine Learning-Based Approaches - Группа авторов - Страница 18

References

Оглавление

1. Ray, U., Chouhan, U., Verma, N., Comparative study of machine learning approaches for classification and prediction of selective caspase-3 antagonist for Zika virus drugs. Neural Comput. Appl., 32, 11311–11328, 2020.

2. Singh, J.P., Pradhan, C., Das, S.C., Image Processing and Machine Learning Techniques to Detect and Classify Paddy Leaf Diseases: A Review, in: Machine Learning and Information Processing, pp. 161–172, Springer, Singapore, 2020.

3. Cao, Z., Identification of the Association between Hepatitis B Virus and Liver Cancer using Machine Learning Approaches based on Amino Acid, in: Proceedings of the 2020 10th International Conference on Bioscience, Biochemistry and Bioinformatics, 2020, January, pp. 56–63.

4. Sambasivam, G. and Opiyo, G.D., A predictive machine learning application in agriculture: Cassava disease detection and classification with imbalanced dataset using convolutional neural networks. Egypt. Inform. J., 2020.

5. Al-Kasassbeh, M., Mohammed, S., Alauthman, M., Almomani, A., Feature Selection Using a Machine Learning to Classify a Malware, in: Handbook of Computer Networks and Cyber Security, pp. 889–904, Springer, Cham, 2020.

6. Yang, X., Yang, S., Li, Q., Wuchty, S., Zhang, Z., Prediction of human-virus protein–protein interactions through a sequence embedding-based machine learning method. Comput. Struct. Biotechnol. J., 18, 153–161, 2020.

7. Dey, L., Chakraborty, S., Mukhopadhyay, A., Machine Learning Techniques for Sequence-based Prediction of Viral–Host Interactions between SARS-CoV-2 and Human Proteins, Biomedical J., 2020.

8. Gibert, D., Mateu, C., Planes, J., The rise of machine learning for detection and classification of malware: Research developments, trends and challenges. J. Netw. Comput. Appl., 153, 1–22, 2020.

9. Karanja, E.M., Masupe, S., Jeffrey, M.G., Analysis of internet of things malware using image texture features and machine learning techniques. Internet Things, 9, 100153, 2020.

10. Sen, P.C., Hajra, M., Ghosh, M., Supervised Classification Algorithms in Machine Learning: A Survey and Review, in: Emerging Technology in Modelling and Graphics, pp. 99–111, Springer, Singapore, 2020.

11. Ahuja, R., Chug, A., Gupta, S., Ahuja, P., Kohli, S., Classification and Clustering Algorithms of Machine Learning with their Applications, in: Nature-Inspired Computation in Data Mining and Machine Learning, pp. 225–248, Springer, Cham, 2020.

12. Di Noia, A., Martino, A., Montanari, P., Rizzi, A., Supervised machine learning techniques and genetic optimization for occupational diseases risk prediction. Soft Comput., 24, 6, 4393–4406, 2020.

13. Firdausi, I., Erwin, A., Nugroho, A.S., Analysis of machine learning techniques used in behavior-based malware detection, in: 2010 Second International Conference on Advances in Computing, Control, and Telecommunication Technologies, 2010, December, IEEE, pp. 201–203.

14. Muda, Z., Yassin, W., Sulaiman, M.N., Udzir, N.I., Intrusion detection based on K-Means clustering and Naïve Bayes classification, in: 2011 7th International Conference on Information Technology in Asia, 2011, July, IEEE, pp. 1–6.

15. Chen, Y., Luo, Y., Huang, W., Hu, D., Zheng, R.Q., Cong, S.Z., Wang, X.Y., Machine-learning-based classification of real-time tissue elastography for hepatic fibrosis in patients with chronic hepatitis B. Comput. Biol. Med., 89, 18–23, 2017.

16. Shruthi, U., Nagaveni, V., Raghavendra, B.K., A review on machine learning classification techniques for plant disease detection, in: 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), 2019, March, IEEE, pp. 281–284.

17. Trishna, T.I., Emon, S.U., Ema, R.R., Sajal, G.I.H., Kundu, S., Islam, T., Detection of Hepatitis (A, B, C and E) Viruses Based on Random Forest, K-nearest and Naïve Bayes Classifier, in: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2019, July, IEEE, pp. 1–7.

18. Mahajan, G., Saini, B., Anand, S., Malware Classification Using Machine Learning Algorithms and Tools, in: 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP), 2019, February, IEEE, pp. 1–8.

19. Kaur, D., Machine Learning Approach for Credit Card Fraud Detection (KNN & Naïve Bayes), Machine Learning Approach for Credit Card Fraud Detection (KNN & Naïve Bayes) in International Conference on Innovative Computing & Communications (ICICC), 2020.

20. Goyal, S., Naïve Bayes Model Based Improved K-Nearest Neighbor Classifier for Breast Cancer Prediction, in: International Conference on Advanced Informatics for Computing Research, 2019, June, Springer, Singapore, pp. 3–11.

21. Devika, R., Avilala, S.V., Subramaniyaswamy, V., Comparative Study of Classifier for Chronic Kidney Disease prediction using Naive Bayes, KNN and Random Forest, in: 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), 2019, March, IEEE, pp. 679–684.

22. Wahid, M.F., Hasan, M.J., Alom, M.S., Mahbub, S., Performance Analysis of Machine Learning Techniques for Microscopic Bacteria Image Classification, in: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2019, July, IEEE, pp. 1–4.

23. Matuszewski, D.J. and Sintorn, I.M., Reducing the U-Net size for practical scenarios: Virus recognition in electron microscopy images. Comput. Methods Programs Biomed., 178, 31–39, 2019.

24. Kumar, D. and Maji, P., An Efficient Method for Automatic Recognition of Virus Particles in TEM Images, in: International Conference on Pattern Recognition and Machine Intelligence, 2019, December, Springer, Cham, pp. 21–31.

25. Steur, N.A. and Mueller, C., Classification of Viral Hemorrhagic Fever Focusing Ebola and Lassa Fever Using Neural Networks. Int. J. Mach. Learn. Comput., 9, 3, 334–343, 2019.

26. Dreiseitl, S. and Ohno-Machado, L., Logistic regression and artificial neural network classification models: A methodology review. J. Biomed. Inf., 35, 5–6, 352–359, 2002.

27. Ito, E., Sato, T., Sano, D., Utagawa, E., Kato, T., Virus particle detection by convolutional neural network in transmission electron microscopy images. Food Environ. Virol., 10, 2, 201–208, 2018.

28. Devan, K.S., Walther, P., von Einem, J., Ropinski, T., Kestler, H.A., Read, C., Detection of herpesvirus capsids in transmission electron microscopy images using transfer learning. Histochem. Cell Biol., 151, 2, 101–114, 2019.

29. Miranda-Saksena, M., Boadle, R.A., Cunningham, A.L., Preparation of Herpes Simplex Virus-Infected Primary Neurons for Transmission Electron Microscopy, in: Herpes Simplex Virus, pp. 343–354, Humana, New York, NY, 2020.

30. Prasad, S., Potdar, V., Cherian, S., Abraham, P., Basu, A., Team, I.N.N., Transmission electron microscopy imaging of SARS-CoV-2. Indian J. Med. Res., 151, 2–3, 241, 2020.

31. Roingeard, P., Raynal, P.I., Eymieux, S., Blanchard, E., Virus detection by transmission electron microscopy: Still useful for diagnosis and a plus for biosafety. Rev. Med. Virol., 29, 1, e2019, 2019.

32. Xie, L., Song, X.J., Liao, Z.F., Wu, B., Yang, J., Zhang, H., Hong, J., Endoplasmic reticulum remodeling induced by Wheat yellow mosaic virus infection studied by transmission electron microscopy. Micron, 120, 80–90, 2019.

33. Thomas, T., Vijayaraghavan, A.P., Emmanuel, S., Machine Learning and Cybersecurity, in: Machine Learning Approaches in Cyber Security Analytics, pp. 37–47, Springer, Singapore, 2020.

34. Mirjalili, S., Faris, H., Aljarah, I., Introduction to Evolutionary Machine Learning Techniques, in: Evolutionary Machine Learning Techniques, pp. 1–7, Springer, Singapore, 2020.

35. Jena, K.K., Mishra, S., Mishra, S., Bhoi, S.K., Stored Grain Pest Identification Using an Unmanned Aerial Vehicle (UAV)-Assisted Pest Detection Model, in: Machine Vision Inspection Systems: Image Processing, Concepts, Methodologies and Applications, vol. 1, pp. 67–83, 2020.

36. Nayak, S.R., Mishra, J., Khandual, A., Palai, G., Fractal dimension of RGB color images. Optik, 162, 196–205, 2018.

37. Nayak, S.R. and Mishra, J., Analysis of Medical Images Using Fractal Geometry, in: Histopathological Image Analysis in Medical Decision Making, pp. 181–201, IGI Global, Hershey, Pennsylvania, 2019.

38. Nayak, S.R., Mishra, J., Palai, G., Analysing Roughness of Surface through Fractal Dimension: A Review. Image Vision Comput., 89, 21–34, 2019.

39. Jena, K.K., Mishra, S., Mishra, S.N., Bhoi, S.K., Nayak, S.R., MRI Brain Tumor Image Analysis Using Fuzzy Rule Based Approach. J. Res. Lepid., 50, 98–112, 2019.

40. Nayak, S.R. and Mishra, J., A modified triangle box-counting with precision in error fit. J. Inf. Optim. Sci., 39, 113–128, 2018.

41. Jena, K.K., Mishra, S., Mishra, S.N., Bhoi, S.K., 2L-ESB: A Two Level Security Scheme for Edge Based Image Steganography. Int. J. Emerg. Technol., 10, 29–38, 2019.

42. Nayak, S.R., Mishra, J., Palai, G., An extended DBC approach by using maximum Euclidian distance for fractal dimension of color images. Optik, 166, 110–115, 2018.

43. Jena, K.K., Mishra, S., Mishra, S., Bhoi, S.K., Unmanned Aerial Vehicle Assisted Bridge Crack Severity Inspection Using Edge Detection Methods, in: 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), IEEE, pp. 284–289, 2019.

44. Nayak, S.R., Ranganath, A., Mishra, J., Analysing Fractal Dimension of Color Images, in: IEEE International Conference on Computational Intelligence and Networks 2015, pp. 156–159, 2019.

45. Jena, K.K., Mishra, S., Mishra, S.N., An Edge Detection Approach for Fractal Image Processing, in: Examining Fractal Image Processing and Analysis, pp. 1–22, IGI Global, Hershey, Pennsylvania, 2020.

46. Nayak, S.R., Mishra, J., Padhy, R., A New Extended Differential Box-Counting Method by Adopting Unequal Partitioning of Grid for Estimation of Fractal Dimension of Grayscale Images, in: Computational Signal Processing and Analysis, pp. 45–57, Springer, Singapore, 2018.

47. Bhoi, S.K., Panda, S.K., Jena, K.K., Mallick, C., Khan, A., A fuzzy approach to identify fish red spot disease, in: Grey Systems: Theory and Application, 2020.

48. Das, S.K., Nayak, S.R., Mishra, J., Fractal Geometry: The Beauty of Computer Graphics. J. Adv. Res. Dyn. Control Syst., 9, 10, 76–82, 2017.

49. Jena, K.K., Mishra, S., Mishra, S.N., An Algorithmic Approach Based on CMS Edge Detection Technique for the Processing of Digital Images, in: Examining Fractal Image Processing and Analysis, pp. 252–272, IGI Global, Hershey, Pennsylvania, 2020.

50. Nayak, S.R., Khandual, A., Mishra, J., Ground truth study on fractal dimension of color images of similar texture. J. Text. Inst., 109, 2018, 1159–1167, 2020.

51. Nayak, S.R., Mishra, J., Jena, P.M., Fractal analysis of image sets using differential box counting techniques. Int. J. Inf. Technol., 10, 39–47, 2018.

52. Nayak, S.R., Mishra, J., Palai, G., A modified approach to estimate fractal dimension of gray scale images. Optik, 161, 136–145, 2018.

53. Jena, K.K., Nayak, S.R., Mishra, S., Mishra, S.N., Vehicle Number Plate Detection: An Edge Image Based Approach, in: 4th Springer International Conference on Advanced Computing and Intelligent Engineering, Advances in Intelligent Systems and Computing, 2019.

54. Nayak, S.R., Mishra, J., Padhy, R., An improved algorithm to estimate the fractal dimension of gray scale images, in: International Conference on Signal Processing, Communication, Power and Embedded System, IEEE, pp. 1109–1114, 2016.

55. Nayak, S.R., Mishra, J., Jena, P.M., Fractal dimension of grayscale images, in: Progress in Computing, Analytics and Networking, pp. 225–234, Springer, Singapore, 2018.

56. https://orange.biolab.si/download/#windows [Accessed on April 11, 2020].

57. https://www.onlinebiologynotes.com/classification-of-virus/ [Accessed on May 14, 2020].

58. https://www.viprbrc.org/brc/home.spg?decorator=vipr [Accessed on May 14, 2020].

59. https://www.researchgate.net/figure/Transmission-electron-micro-scopeview-of-an-Ebolavirus-virion-The-bar-shows-an_fig1_269095800 [Accessed on May 29, 2020].

60. https://commons.wikimedia.org/wiki/File:Ebola_Virus_TEM_PHIL_1832_lores.jpg [Accessed on May 29, 2020].

61. https://time.com/3502740/ebola-virus-1976/ [Accessed on May 29, 2020].

62. https://en.wikipedia.org/wiki/Ebolavirus [Accessed on May 29, 2020].

63. https://www.wvik.org/post/why-wont-fear-airborne-ebola-go-away-0#stream/0 [Accessed on May 29, 2020].

64. https://www.defense.gov/observe/photo-gallery/igphoto/2001104229/ [Accessed on May 29, 2020].

65. https://www.flickr.com/photos/nihgov/27385281096/ [Accessed on May 29, 2020].

66. https://www.britannica.com/science/Zika-virus [Accessed on May 29, 2020].

67. https://en.wikipedia.org/wiki/Zika_virus [Accessed on May 29, 2020].

68. https://www.northcountrypublicradio.org/news/npr/495935879/zika-mystery-how-did-a-73-year-old-man-infect-his-son [Accessed on May 29, 2020].

69. https://www.mtu.edu/unscripted/stories/2018/november/be-brief-envel-oped.html [Accessed on May 29, 2020].

70. https://www.mpi-magdeburg.mpg.de/3254770/2017-05-15-pm-zika-virus-propagation [Accessed on May 29, 2020].

71. https://www.nih.gov/news-events/nih-research-matters/novel-coronavirus-structure-reveals-targets-vaccines-treatments [Accessed on May 29, 2020].

72. http://www.sci-news.com/medicine/sars-cov-2-natural-origin-08242.html [Accessed on May 29, 2020].

73. https://www.sciencemag.org/news/2020/03/who-launches-global-mega-trial-four-most-promising-coronavirus-treatments [Accessed on May 29, 2020].

74. https://www.genengnews.com/news/sars-cov-2-insists-on-making-a-name-for-itself/[Accessed on May 29, 2020].

75. https://www.niaid.nih.gov/news-events/novel-coronavirus-sarscov2-images [Accessed on May 29, 2020].

76. https://www.soundhealthandlastingwealth.com/health-news/new-insightsinto-sars-cov-2-viral-diversity/?utm_source=rss&utm_medium=rss&utm_campaign=new-insights-into-sars-cov-2-viral-diversity [Accessed on May 29, 2020].

77. https://www.flickr.com/photos/nihgov/43683984840 [Accessed on May 29, 2020].

78. https://www.nih.gov/news-events/news-releases/scientists-develop-novel-vaccine-lassa-fever-rabies [Accessed on May 29, 2020].

79. https://www.nytimes.com/2015/05/27/science/lassa-virus-carries-little-risk-to-public-experts-say.html [Accessed on May 29, 2020].

80. http://www.mrcindia.org/journal/issues/441001.pdf [Accessed on May 29, 2020].

81. https://www.dw.com/en/man-severely-ill-with-lassa-fever-being-treated-at-university-hospital-frankfurt/a-19122900 [Accessed on May 29, 2020].

82. https://fineartamerica.com/featured/1-lassa-virus-tem-science-source.html [Accessed on May 29, 2020].

83. https://www.cdc.gov/non-polio-enterovirus/resources-ev68-photos.html [Accessed on May 29, 2020].

84. https://www.researchgate.net/figure/TEM-image-of-Enterovirus-71-EV71-virus-like-particles-The-morphology-of-purified-VLPs_fig1_277783163 [Accessed on May 29, 2020].

85. https://www.nih.gov/news-events/nih-research-matters/enterovirus-infection-linked-acute-flaccid-myelitis [Accessed on May 29, 2020].

86. https://en.wikipedia.org/wiki/Enterovirus_C [Accessed on May 29, 2020].

87. https://www.emptywheel.net/tag/enterovirus-d68/?print=print [Accessed on May 29, 2020].

88. https://simple.wikipedia.org/wiki/Enterovirus [Accessed on May 29, 2020].

*Corresponding author: kalyankumarjena@gmail.com

Machine Vision Inspection Systems, Machine Learning-Based Approaches

Подняться наверх