Читать книгу Carbon Nanofibers - Группа авторов - Страница 92
References
Оглавление1. Liu, Z., Gan, L.M., Hong, L., Chen, W., Lee, J.Y., Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells. J. Power Sources, 139, 73, 2005.
2. Solsona, B., Graham, J.H., Tomas, G., Taylor, S.H., Supported gold catalysts for the total oxidation of alkanes and carbon monoxide. New J. Chem., 6, 2004.
3. Singh, S.B. and Tandon, P.K., Catalysis: A Brief Review on Nano-Catalyst. J. Energy Chem. Eng., 2, 3, 106–115, 2014.
4. Gupta, V., M.S. thesis, Dept. of Chemical and Materials Engineering, Univ, of Cincinnati, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1136846342
5. Rodriguez-Manzo, J.A., Terrones, M., Terrones, H., Kroto, H.W., Sun, L., Banhart, F., In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. Nat. Nanotechnol., 2, 307–311, 2007.
6. Sharon, M. and Sharon, M., Carbon Nano Forms and Application, McGraw Hill, USA, 2010.
7. Menezes, W.G., Zielasek, Thiel, V.K., Hartwig, A., Bäumer, M., Effect of particle size, composition and support on catalytic activity of AuAg nanoparticles prepared in reverse block copolymer micelles as nanoreactors. J. Catal., 299, 222–231, 2013.
8. Cheng, Y., Zheng, Y., Wang, Y., Bao, F., Qin, Y., Synthesis and magnetic properties of nickel ferrite nano-octahedra. J. Solid-State Chem., 178, 2394–2397, 2005.
9. Xu, H., Zeng, L., Xing, S., Xian, Y., Jin, L., Microwave- irradiated synthesized platinum nanoparticles/carbon nanotubes for oxidative determination of trace Arsenic (III). Electrochem. Commun., 10, 551–554, 2010.
10. Men, Y., Higuchi, M., Yamamoto, K., Synthesis of DPA dendron encapsulated gold clusters with metal-assembling function. Sci. Technol. Adv. Mater., 7, 2, 139–144, 2006.
11. Cheney, B.A., Lauterbach, J.A., Chen, J.G., Reverse micelle synthesis and characterization of supported Pt/Ni bimetallic catalyst on ℷAl2O3 Appl. Catal. A: Gen., 394, 41–47, 2011.
12. Oza, G., Pandey, S., Mewada, A., Sharon, M., Extracellular biosynthesis of gold nanoparticles using Salmonella typhi. Der Chimica Sinica, 3, 5, 1041–46, 2012. (ISSN: 0976–8505).
13. Oza, G., Pandey, S., Sharon, M., Extra cellular bio-synthesis of gold nanoparticles using Escherichia coli and deciphering the role of lactate dehydrogenase using LDH knockout E.coli. J. At. Mol., 2, 4, 301–311, 2012. ISSN–2277–1247.
14. Mewada, A., Pandey, S., Oza, G., Shah, R., Thakur, M., Gupta, A., Sharon, M., A novel report on assessing pH dependent role of nitrate reductase on green biofabrication of gold nanoplates and nanocubes, J. Bionanosci., 7, 2, 174–180, 2013.
15. Chen, D., Rønning, M., Tøtdal, B., Vrålstad, T., Ochoa-Fernández, E., Holmen, A., Large- scale synthesis of carbon nanofiber on Ni-Fe-Al hydrotalcite derived catalysts:II: Effect of Ni/Fe composition on CNF synthesis from ethylene and carbon monoxide. Appl. Catal. A, 338, 147–158, 2008.
16. Narayanan, K.B. and Sakthivel, N., Synthesis and characterization of nanogold composite using cylindrocldium floridanum and heterogenous catalysis in the degradation of 4-nitrphenol. J. Hazard. Mater., 189, 519–525, 2011.
17. Pandey, S., Mewada, A., Thakur, M., Shinde, S., Shah, R., Oza, G., Sharon, M., Synthesis and Cetrifugal Separation of Fluorescent Carbon Dots at Room Temperature. J. Nanosci., 2013, 2013. (ISSN: 2356–749X).
18. Pandey, S., Oza, G., Gupta, A., Shah, R., Sharon, M., Sharon, The possible involvement of nitrate reductase from Aspargus racemosus in biosynthesis of gold nanoparticles. M Eur. J. Exp. Biol., 2, 3, 475–483, 2012.
19. Thakur, M., Pandey, S., Mewada, A., Shah, R., Oza, G., Sharon, M., Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 109, 344–347, 2013.
20. Malik, R., Garg, T., Goyal, A.K., Rath, G., Polymeric nanofibers: targeted gastro-retentive drug delivery systems. J. Drug Target., 23, 2, 24, 2014.
21. Ahmad, N., Sharma, S., Singh, V.N., Shamsi, Fatma, S.F.A., Mehta, B.F., Biosynthesis of silver nanoparticles from Desmodium triflorum: A novel approach towards weed utilization. Biotechnol. Res. Int., 2011, 454090, 8, 2011.
22. Panigrahi, S., Kundu, S., Ghosh, S., Nath, S., Pal, T., General method of synthesis for metal nanoparticles. J. Nanopart. Res., 6, 4, 411–414, 2004.
23. Mude, N., Ingle, A., Gade, A., Rai, M., Synthesis of Silver nanoparticles using Callus extract of Carica papaya- A first Report. J. Plant Biochem. Biotechnol., 18, 83–86, 2009.
24. Dizaj, S.M., Lotfipour, F., Barzegar-Jalali, M., Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C, 44, 278–284, 2014.
25. Endo, M., Kenji, T., Susumu, I., Kiyoharu, K., Minoru, S., Kroto, H.W., The production and structure of pyrolytic carbon nanotubes. J. Phys. Chem. Solids, 54, 12, 1841–1848, 1993.
26. Yang, R.T. and Chen, J.P., Mechanism of carbon filament growth on metal Catalysts. J. Catal., 115, 1, 52–64, 1989.
27. Kim, M.S., Rodriguez, N.M., Baker, R.T.K., The interaction of hydrocarbons with copper-nickel and nickel in the formation of carbon filaments. J. Catal., 131, 1, 60–73, 1991.
28. Hernadi, K., Fonseca, A., Nagy, J.B., Fudala, A., Bernaerts, D., Kiricsi, I., Catalytic production of carbon nanofibers over iron carbide doped with Sn+2. Appl. Catal. A: Gen., 228, 1–2, 103–113, 2002.
29. Lim, S., Yoon, S., Korai, Y., Mochida, I., Over nickel-iron alloys supported on carbon black. Carbon, 42, 7–8, 1765–1781, 2004.
30. Takehira, K., Ohi, T., Shishido, T., Kawabata, T., Takaki, K., Catalytic growth of carbon fibers from methane and ethylene on carbon-supported Ni catalyst. Appl. Catal. A: Gen., 283, 1-2, 137–145, 2005.
31. De Bokx, P.K., Kock, A.J.H.M., Boellaard, E., Klop, W., Geus, J.W., The formation of filamentous carbon on iron and nickel catalyst: I. Thermodynamics. J. Catal., 96, 2, 454–467, 1985.
32. Kock, A.J.H., De Bokx, M.P.K., Boellaard, E., Klop, W., Geus, J.W., The formation of filamentous carbon on iron and nickel catalyst: II. Mechanism. J. Catal., 96, 2, 468–480, 1985.
33. Alstrup, I.J., A new model explaining carbon filament growth on nickel, iron and Ni-Cu alloy catalysts. J. Catal., 109, 2, 241–251, 1988.
34. Mukhopadhyay, K., Porwal, D., Lal, D., Ram, K., Mathur, G.N., Synthesis of coiled/straight carbon nanofibers by catalytic chemical vapor deposition. Carbon, 42, 3254–3256, 2004.
35. Chang, M., Cao, J., Li, J., Wu, L., Fan, Q., Song, Y., Shi, J., Synthesis of mesoporous ribbon-shaped graphitic carbon nanofibers with superior performance as efficient supercapacitor electrodes. Electrochim. Acta, 292, 364–373, 2018.
36. Bachmatuik, A., Bornnert, F., Schaffel, F., Zaka, M., The formation of stacked-cup carbon nanotubes using chemical vapor deposition from ehanol over silica. Carbon, 48, 11, 3175–3181, 2010.
37. Miniach, E., Śliwak, A., Moyseowicz, A., Gryglewicz, G., Growth of carbon nanofibers from methane on a hydroxyapatite-supported nickel catalyst. J. Mater. Sci., 51, 5367, 2016.
38. Romero, A., Garrido, A., Nieto-Marquez, A., de la Osa, A.R., de Lucas, A., Valverde, J.L., The influence of operating conditions on the growth of carbon nanofibers on carbon nanofiber-supported nickel catalyst. Appl. Catal. A, 319, 246–258, 2007.
39. Bera, D., Brinley, E., Kuiry, S.C., McCutchen, M., Seal, S., Heinrich, H., Kabes, B., Optoelectronically automated system for carbon nanotubes synthesis via arc discharge in solution. Rev. Sci. Instrum., 76, 3, 1–6, 2005.
40. Ma, X.-D., Qian, X.-F., Yin, J., Zhu, Z.-K., Preparation and characterization of polyvinyl alcohol-selenide nanocomposites at room temperature. J. Mater. Chem., 12, 663–666, 2002.
41. Suda, Y., Tanaka, A., Okita, A., Sakai, Y., Sugawara, H., Growth of carbon nanofibers on metal-catalyzed substrates by pulsed laser ablation of graphite J. Phys.: Conf. Ser., 59, 348–353, 2007.
42. Pierson, H.O., Handbook of Chemical Vapor Deposition: Principles, Technology, and Applications, 2nd Edition, Noyes Publications, Park Ridge, New Jersey, USA, Wen JG, Ren ZF. Applied Physics A 74(3), 397–402, 2002.
43. Ge, M. and Sattler, K., Observation of fullerene cones. Chem. Phys. Lett., 220, 192–196, 1994.
44. Wei, Z., Sun, J., Li, Y., Datye, A.K., Wang, Y., Bimetallic catalyst for hydrogen generation. Chem. Soc. Rev., 41, 7994–8008, 2012.
45. Vallés, C., Pérez-Mendoza, M., Maser, W.K., Effects of partial and total methane flows on the yield and structural characteristics of MWCNTs produced by CVD. Carbon, 47, 4, 998–1004, 2009.
46. Li, W.Z., Wen, J.G., Ren, Z.F., Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition. Appl. Phys. A, 74, 3, 397–402, 2002.
47. Muradov, N. and Schwitter, A., Formation of conical structures on vapor-grown carbon filaments. Nano Lett., 2, 6, 673–676, 2002.
48. Dahe, G.J., Teotia, R.S., Bellare, J.R., The role of zeolite nanoparticles additive on morphology, mechanical properties and performance of polysulfone hollow fiber membranes. Chem. Eng. J., 197, 398–406, 2012.
49. Díaz, M.C., James, M., Blackman, C., Snape, E., Maximizing carbon nanofiber and hydrogen production in the catalytic decomposition of ethylene over an unsupported Ni-Cu alloy. Appl. Catal. A: Gen., 339, 2, 196–208, 2008.
50. De Jong, K.P. and Geus, J.W., Catalytic synthesis and applications. Catal. Rev. Sci., 42, 4, 481–510, 2000.
51. Martin-Gullon, I., Vera, J., Conesa, J.A., González, J.L., Merino, C., Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. Carbon, 44, 8, 1572–1580, 2006.
52. Pierson, H.O., Handbook of Carbon, Graphite, Diamond and Fullerenes: Properties, Processing and Applications, Noyes Publications, Park Ridge, New Jersey, USA, 1993.
53. Morgan, P., Carbon Fibers and Their Composites, CRC Press, Boca Raton, FL, 2005.
54. Kang, K.S., Cho, K.Y., Lim, H.K., Kim, J., Investigation of surface morphology of cellulose acetate micro-mould after deacetylation J. Phys. D; Appl. Phys., 41, 1–5, 2008.
55. https://www.slideshare.net/foolishcrack/nanocatalyst-108342252
56. https://edurev.in/studytube/Nano-metal-or-metal-oxide-catalysts--Catalyst-Scie/9b6f7900–95f8–4c67-a444-ef2f86a4b1fd_t#)
57. L. Feng, N. Xei, Z. Jing, Carbon nanofibers and their composites: A review of synthesizing, properties and applications. Materials, 7, 3919–3945, 2014
1 Email: sumant22@yahoo.co.in