Читать книгу Encyclopedia of Glass Science, Technology, History, and Culture - Группа авторов - Страница 249

References

Оглавление

1 1 Greaves, G.N. and Sen, S. (2007). Inorganic glasses, glass‐forming liquids and amorphizing solids. Adv. Phys. 56: 1–166.

2 2 Vessal, B. et al. (1992). Cation microsegregation and ionic mobility in mixed alkali glasses. Nature 356: 504–507.

3 3 Suryanayana, C. and Inoue, A. (2017). Bulk Metallic Glasses. Boca Raton: CRC Press.

4 4 Sheng, H.W., Luo, W.K., Alamgir, F.M. et al. (2006). Atomic packing and short‐to‐medium‐range order in metallic glasses. Nature 439: 419–425.

5 5 Affatigato, M. (ed.) (2014). Modern Glass Characterisation. Hoboken, NJ: Wiley.

6 6 Fischer, H.E., Barnes, A.C., and Salmon, P.S. (2006). Neutron and X‐ray diffraction studies of liquids and glasses. Rep. Prog. Phys. 69: 233–269.

7 7 Elliott, S.R. (1990). Physics of Amorphous Materials. New York: Wiley.

8 8 Benmore, C.J. (2012). A review of high energy X‐ray diffraction from glasses and liquids. ISRN Mater. Sci. 2012: 852905. (19 pages).

9 9 Greaves, G.N. (1985). EXAFS and the structure of glass. J. Non‐Cryst. Solids 71: 203–217.

10 10 McGreevy, R.L. (2001). Reverse Monte Carlo modelling. J. Phys.: Condens. Matter 13: R877–R913.

11 11 Smith, W., Greaves, G.N., and Gillan, M.J. (1995). Computer simulation of sodium disilicate glass. J. Chem. Phys. 103: 3091–3097.

12 12 Zeng, Q., Sheng, H., Ding, Y. et al. (2011). Long range topological order in metallic glass. Science 332: 1404–1406.

13 13 Zachariasen, W.H. (1932). The atomic arrangement in glass. J. Am. Chem. Soc. 54: 3841–3851.

14 14 Greaves, G.N. (2019). Hybrid glasses: from metal organic frameworks and coordination polymers to hybrid perovskites. In: Springer Handbook of Glass (eds. J.D. Musgraves, J. Hu and L. Calvez). Cham: Springer.

15 15 Bennett, T.D. et al. (2015). Hybrid glasses from strong and fragile metal‐organic framework liquids. Nat. Commun. 6: 1–7.

16 16 Greaves, G.N., Meneau, F., Majérus, O. et al. (2005). Identifying the vibrations that destabilise crystals and which characterise the glassy state. Science 308: 1299–1302.

17 17 Greaves, G.N., Greer, A.L., Lakes, R.S., and Rouxel, T. (2011). Poisson's ratio and modern materials. Nat. Mater. 10: 823–837.

18 18 Chumakov, A.I. et al. (2014). Role of disorder in the thermodynamics and atomic dynamics of glasses. Phys. Rev. Lett. 112: 025502.

19 19 Shintani, H. and Tanaka, H. (2008). Universal link between the boson peak and transverse phonons in glass. Nat. Mater. 7: 870–877.

20 20 Luo, P., Li, Y.Z., Bai, H.Y. et al. (2016). Memory effect manifested by a boson peak in metallic glass. Phys. Rev. Lett. 116: 175901.

21 21 Wondraczek, L. et al. (2018). Kinetics of decelerated melting. Adv. Sci. 5 (5): 1700850.

22 22 Huang, P.Y. et al. (2012). Direct imaging of a two‐dimensional silica glass. Nano Lett. 12: 1081–1086.

23 23 Hirata, A. et al. (2011). Direct observation of local atomic order in a metallic glass. Nat. Mater. 10: 28–33.

24 24 Frischat, G.H., Poggemann, J.‐F., and Heide, E. (2004). Nanostructure and atomic structure of glass seen by atomic force microscopy. J. Non‐Cryst. Solids 345–346: 197–202.

25 25 Bernal, J.D. (1960). Geometry of the structure of monatomic liquids. Nature 185: 68–70.

26 26 Stanley, H.E. (ed.) (2013). Liquid polyamorphism. Adv. Chem. Phys. 152: 1–611.

27 27 Le Losq, C. et al. (2017). Percolation channels: a universal idea to describe the atomic structure and dynamics of glasses and melts. Sci. Rep. 7: 16490.

28 28 Greaves, G.N. and Ngai, K.L. (1995). Reconciling ionic transport properties with atomic structure in oxide glasses. Phys. Rev., B 52: 6358–6380.

29 29 Adler, B.J. and Wainwright, T.E. (1959). Studies in molecular dynamics. 1. General method. J. Chem. Phys. 31: 459–466.

Encyclopedia of Glass Science, Technology, History, and Culture

Подняться наверх