Читать книгу Encyclopedia of Glass Science, Technology, History, and Culture - Группа авторов - Страница 331

References

Оглавление

1 1 Frenkel, D. and Smit, B. (1996). Understanding Molecular Simulations: From Algorithms to Applications. San Diego: Academic Press.

2 2 Marx, D. and Hutter, J. (2009). Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. Cambridge: Cambridge University Press.

3 3 Kohn, W. and Sham, L.J. (1965). Self‐consistent equations including exchange and correlation effects. Phys. Rev. 140: A1133–A1138.

4 4 Car, R. and Parrinello, M. (1985). Unified approach for molecular dynamics and density‐functional theory. Phys. Rev. Lett. 55: 2471–2474.

5 5 Jakse, N. and Pasturel, A. (2014). The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics. J. Chem. Phys. 141: 094504.

6 6 Pedesseau, L., Ispas, S., and Kob, W. (2015). First‐principles study of a sodium borosilicate glass‐former: I. The liquid state; and II. The glassy state. Phys. Rev. B 91: 134201, ibid. 134202.

7 7 Sarnthein, J., Pasquarello, A., and Car, R. (1995). Model of vitreous SiO2 generated by an ab initio molecular‐dynamics quench from the melt. Phys. Rev. B 52: 12690–12695.

8 8 Ispas, S., Benoit, M., Jund, P., and Jullien, R. (2001). Structural and electronic properties of the sodium tetrasilicate glass Na2Si2O9 from classical and ab initio molecular dynamics simulations. Phys. Rev. B 64: 214206.

9 9 Pöhlmann, M., Benoit, M., and Kob, W. (2004). First‐principles molecular‐dynamics simulations of a hydrous silica melt: structural properties and hydrogen diffusion mechanism. Phys. Rev. B 70: 184209.

10 10 Du, J. and Corrales, L.R. (2006). Structure, dynamics, and electronic properties of lithium disilicate melt and glass. J. Chem. Phys. 125: 114702.

11 11 Spiekermann, G., Steele‐MacInnis, M., Kowalski, P.M. et al. (2013). Vibrational properties of silica species in MgO–SiO2 glasses obtained from ab initio molecular dynamics. Chem. Geol. 346: 22–33.

12 12 Giacomazzi, L., Umari, P., and Pasquarello, A. (2005). Medium‐range structural properties of vitreous germania obtained through first‐principles analysis of vibrational spectra. Phys. Rev. Lett. 95: 075505.

13 13 Ferlat, G., Charpentier, T., Seitsonen, A.P. et al. (2008). Boroxol rings in liquid and vitreous b 2 o 3 from first principles. Phys. Rev. Lett. 101: 065504.

14 14 Binder, K. and Kob, W. (2011). Glassy Materials and Disordered Solids. Singapore: Word Scientific.

15 15 Tilocca, A. and Cormack, A.N. (2011). The initial stages of bioglass dissolution: a Car–Parrinello molecular‐dynamics study of the glass–water interface. Proc. Roy. Soc. London A 467: 2102–2111.

16 16 Pasquarello, A., Sarnthein, J., and Car, R. (1998). Dynamic structure factor of vitreous silica from first principles: comparison to neutron‐inelastic‐scattering experiments. Phys. Rev. B 57: 14133–14140.

17 17 Benoit, M. and Kob, W. (2002). The vibrational dynamics of vitreous silica: classical force fields vs. first principles. Europhys. Lett. 60: 269–275.

18 18 Giacomazzi, L., Umari, P., and Pasquarello, A. (2009). Medium‐range structure of vitreous SiO2 obtained through first‐principles investigation of vibrational spectra. Phys. Rev. B 79: 064202.

19 19 Ispas, S., Zotov, N., De Wispelaere, S., and Kob, W. (2005). Vibrational properties of a sodium tetrasilicate glass: ab initio versus classical force fields. J. Non‐Cryst. Solids 351: 1144–1150.

20 20 Huang, L. and Kieffer, J. (2015). Challenges in modeling mixed ionic‐covalent glass formers. In: Molecular Dynamics Simulations of Disordered Materials, 87–112. Berlin: Springer.

21 21 Taraskin, S.N. and Elliott, S.R. (1997). Connection between the true vibrational density of states and that derived from inelastic neutron scattering. Phys. Rev. B 55: 117–123.

22 22 Fabiani, E., Fontana, A., and Buchenau, U. (2008). Neutron scattering study of the vibrations in vitreous silica and germania. J. Chem. Phys. 128: 244507.

23 23 Vollmayr, K., Kob, W., and Binder, K. (1996). Cooling‐rate effects in amorphous silica: a computer‐simulation study. Phys. Rev. B 54: 15808–15827.

24 24 Pasquarello, A. and Car, R. (1997). Dynamical charge tensors and infrared spectrum of amorphous SiO2. Phys. Rev. Lett. 79: 1766–1769.

25 25 Umari, P., Pasquarello, A., and dal Corso, A. (2001). Raman scattering intensities in α‐quartz: a first‐principles investigation. Phys. Rev. B 63: 094305.

26 26 Lazzeri, M. and Mauri, F. (2003). First‐principles calculation of vibrational Raman spectra in large systems: signature of small rings in crystalline SiO2. Phys. Rev. Lett. 90: 036401.

27 27 Pickard, C.J. and Mauri, F. (2001). All‐electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B 63: 245101.

28 28 Charpentier, T. (2011). The PAW/GIPAW approach for computing NMR parameters: a new dimension added to NMR study of solids. Solid State Nucl. Magn. Reson. 40: 1–20.

29 29 Charpentier, T., Menziani, M.C., and Pedone, A. (2013). Computational simulations of solid state NMR spectra: a new era in structure determination of oxide glasses. RSC Adv. 3: 10550–10578.

30 30 Giacomazzi, L., Martin‐Samos, L., Boukenter, A. et al. (2014). Epr parameters of E centers in v‐SiO2 from first‐principles calculations. Phys. Rev. B 90: 014108.

31 31 Bouzid, A., Gabardi, S., Massobrio, C. et al. (2015). First‐principles study of amorphous Ga4Sb6Te3 phase‐change alloys. Phys. Rev. B 91: 184201.

32 32 Lee, T.H., Simdyankin, S.I., Hegedus, J. et al. (2010). Spatial distribution of rare‐earth ions and GaS4 tetrahedra in chalcogenide glasses studied via laser spectroscopy and ab initio molecular dynamics simulation. Phys. Rev. B 81: 104204.

33 33 Akola, J., Beuneu, B., Jones, R.O. et al. (2015). Structure of amorphous Ag/Ge/S alloys: experimentally constrained density functional study. J. Phys.: Condens. Matter 27: 485304.

34 34 Bowler, D.R., Choudhury, R., Gillan, M.J., and Miyazaki, T. (2006). Recent progress with large‐scale ab initio calculations: the CONQUEST code. Phys. Stat. Sol. B 243: 989–1000.

35 35 Kühne, T.D. (2014). Second generation Car–Parrinello molecular dynamics. Comput. Mol. Sci. 4: 391–406.

36 36 Carré, A., Horbach, J., Ispas, S., and Kob, W. (2008). New fitting scheme to obtain effective potential from Car‐Parrinello molecular‐dynamics simulations: application to silica. Europhys. Lett. 82: 17001.

37 37 Marrocchelli, D., Salanne, M., Madden, P.A. et al. (2009). The construction of a reliable potential for GeO2 from first principles. Mol. Phys. 107: 443–452.

38 38 Kermode, J.R., Cereda, S., Tangney, P., and De Vita, A. (2010). A first principles based polarizable O(N) interatomic force field for bulk silica. J. Chem. Phys. 133: 094102.

Encyclopedia of Glass Science, Technology, History, and Culture

Подняться наверх