Читать книгу Encyclopedia of Glass Science, Technology, History, and Culture - Группа авторов - Страница 355

References

Оглавление

1 1 Jones, G.O. and Simon, F.E. (1949). Qu'est‐ce qu'un verre? Endeavour 8: 175–181. (in French and in German).

2 2 Nernst, W. (1969). The New Heat Theorem. New York: Dover.

3 3 Takada, A., Conradt, R., and Richet, P. (2015). J. Non Cryst. Solids 429: 33–44.

4 4 De Donder, T. and Van Rysselberghe, P. (1936). Thermodynamic Theory of Affinity, A Book of Principles. Stanford: Stanford University Press.

5 5 Wondraczek, L., Mauro, J.C., Eckert, J. et al. (2011). Towards ultrastrong glasses. Adv. Mater. 23: 4578–4586.

6 6 Angell, C.A. (1995). Formation of glasses from liquids and biopolymers. Science 267: 1924–1935.

7 7 Prigogine, I. and Defay, R. (1950). Thermodynamique Chimique, Nouvelle Rédaction. Liège: Desoer; Chemical Thermodynamics (London: Longmans, 1954).

8 8 Garden, J.‐L., Guillou, H., Richard, J., and Wondraczek, L. (2012). Non‐equilibrium configurational Prigogine‐Defay ratio. J. Non‐Equilib. Thermodyn. 37: 143–177.

9 9 Davies, R.O. and Jones, G.O. (1953). Thermodynamic and kinetic properties of glasses. Adv. Phys. (Phil. Mag. Suppl.) 2: 370–410.

10 10 Kauzmann, W. (1948). The nature of the glassy state and the behavior of liquids at low temperature. Chem. Rev. 43: 219–256.

11 11 Nemilov, S.V. (1995). Thermodynamic and Kinetic Aspects of the Vitreous State. Boca Raton: CRC Press.

12 12 Tool, A.Q. (1945). Relaxation of stresses in annealing glass. J. Res. Natl. Bur. Stand. 34: 199–211.

13 13 Tool, A.Q. (1946). Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 29: 240–253.

14 14 Leuzzi, L. and Nieuwenhuizen, T. (2008). Thermodynamics of the Glassy State. New York: Taylor & Francis.

15 15 Adam, G. and Gibbs, J.H. (1965). On the temperature dependence of cooperative relaxation properties in glass‐forming liquids. J. Chem. Phys. 43: 139–146.

16 16 Binder, K. and Kob, W. (2011). Glassy Materials and Disordered Solids. Singapore: World Scientific.

17 17 Simha, R. and Somcynsky, T. (1969). On the statistical thermodynamics of spherical and chain molecule fluids. Macromolecules 2: 342–350.

18 18 Möller, J., Gutzow, I., and Schmelzer, J.W.P. (2006). Freezing‐in and production of entropy in vitrification. J. Chem. Phys. 125: 094505‐1–094505‐13.

19 19 Garden, J.‐L., Guillou, H., Richard, J., and Wondraczek, L. (2012). Affinity and its derivatives in the glass transition process. J. Chem. Phys. 137: 024505‐1–024505‐10.

20 20 Bestul, A.B. and Chang, S.S. (1965). Limits on calorimetric residual entropies of glasses. J. Chem. Phys. 43: 4532–4533.

21 21 Tombari, E. and Johari, G.P. (2014). Change in entropy in thermal hysteresis of liquid‐glass‐liquid transition and consequences of violating the Clausius theorem. J. Chem. Phys. 141: 074502‐1–074502‐5.

22 22 Moynihan, C.T., Macedo, P.B., Montrose, C.J. et al. (1976). Structural relaxation in vitreous materials. Ann. N. Y. Acad. Sci. 279: 15–35.

23 23 Narayanaswamy, O.S. (1971). A model of structural relaxation in glass. J. Am. Ceram. Soc. 54: 491–498.

24 24 Cangialosi, D. (2014). Dynamics and thermodynamics of polymer glasses. J. Phys. Condens. Matter 26: 153101‐1–153101‐19.

25 25 Swallen, S.F., Kearns, K.L., Mapes, M.K. et al. (2007). Organic glasses with exceptional thermodynamic and kinetic stability. Science 315: 353–356.

26 26 Rodríguez‐Tinoco, C., González‐Silveira, M., Barrio, M. et al. (2016). Ultrastable glasses portray similar behaviour to ordinary glasses at high pressure. Sci. Rep. 6: 34296–1–10.

Encyclopedia of Glass Science, Technology, History, and Culture

Подняться наверх