Читать книгу Heterogeneous Catalysts - Группа авторов - Страница 42

References

Оглавление

1 1 Mehla, S., Das, J., Jampaiah, D. et al. (2019). Recent advances in preparation methods for catalytic thin films and coatings. Catal. Sci. Technol. 9: 3582–3602.

2 2 Lee, W. and Park, S.‐J. (2014). Porous anodic aluminum oxide: anodization and template synthesis of functional nanostructures. Chem. Rev. 114: 7487–7556.

3 3 Uchiyama, H. (2015). Evaporation‐driven self‐organization of sol–gel dip‐coating films. J. Ceram. Soc. Jpn. 123: 457–464.

4 4 Hunt, H.K., Lew, C.M., Sun, M. et al. (2010). Pure‐silica zeolite thin films by vapor phase transport of fluoride for low‐k applications. Microporous Mesoporous Mater. 128: 12–18.

5 5 Karches, M., Morstein, M., von Rohr, P.R. et al. (2002). Plasma CVD‐coated glass beads as photocatalyst for water decontamination. Catal. Today 72: 267–279.

6 6 Singh, J. and Wolfe, D.E. (2005). Nano and macro‐structured component fabrication by electron beam‐physical vapor deposition (EB‐PVD). J. Mater. Sci. 40: 1–26.

7 7 Sarakinos, K., Alami, J., and Konstantinidis, S. (2010). High power pulsed magnetron sputtering: a review on scientific and engineering state of the art. Surf. Coat. Technol. 204: 1661–1684.

8 8 Nistico, R., Scalarone, D., and Magnacca, G. (2017). Sol–gel chemistry, templating and spin‐coating deposition: a combined approach to control in a simple way the porosity of inorganic thin films/coatings. Microporous Mesoporous Mater. 248: 18–29.

9 9 Mechiakh, R., Sedrine, N.B., Chtourou, R., and Bensaha, R. (2010). Correlation between microstructure and optical properties of nano‐crystalline TiO2 thin films prepared by sol–gel dip coating. Appl. Surf. Sci. 257: 670–676.

10 10 Ojo, A.A. and Dharmadasa, I.M. (2018). Electroplating of semiconductor materials for applications in large area electronics: a review. Coatings 8: 262.

11 11 Kay, A., Cesar, I., and Gratzel, M. (2006). New benchmark for water photooxidation by nanostructured Fe2O3 films. J. Am. Chem. Soc. 128: 15714–15731.

12 12 Brust, M., Bethell, D., Kiely, C.J., and Schiffrin, D.J. (1998). Self‐assembled gold nanoparticle thin films with non‐metallic optical and electronic properties. Langmuir 14: 5425–5429.

13 13 Ung, T., Liz‐Marzan, L.M., and Mulvaney, P. (2001). Optical properties of thin films of Au@SiO2 particles. J. Phys. Chem. B 105: 3441–3452.

14 14 Osaka, T. (1997). Electrochemical formation and microstructure in thin films for high functional devices. Electrochim. Acta 42: 3015–3022.

15 15 Wang, K., Liu, G., Hoivik, N. et al. (2014). Electrochemical engineering of hollow nanoarchitectures: pulse/step anodization (Si, Al, Ti) and their applications. Chem. Soc. Rev. 43: 1476–1500.

16 16 Xiao, F., Hangarter, C., Yoo, B. et al. (2008). Recent progress in electrodeposition of thermoelectric thin films and nanostructures. Electrochim. Acta 53: 8103–8117.

17 17 Besra, L. and Liu, M. (2007). A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52: 1–61.

18 18 Yun, J.‐Y., Wong, R.J., Ng, Y.H. et al. (2012). Combined electrophoretic deposition–anodization method to fabricate reduced graphene oxide‐TiO2 nanotube films. RSC Adv. 2: 8164–8171.

19 19 Prakasam, H.E., Shankar, K., Paulose, M. et al. (2007). A new benchmark for TiO2 nanotube array growth by anodization. J. Phys. Chem. C 111: 7235–7241.

20 20 Yun, J.‐H., Ng, Y.H., Ye, C. et al. (2011). Sodium fluoride‐assisted modulation of anodized TiO2 nanotube for dye‐sensitized solar cells application. ACS Appl. Mater. Interfaces 3: 1585–1593.

21 21 Ng, C., Ye, C., Ng, Y.H., and Amal, R. (2010). Flower‐shaped tungsten oxide with inorganic fullerene‐like structure: synthesis and characterization. Cryst. Growth Des. 10: 3794–3801.

22 22 Lou, S.N., Yap, N., Scott, J. et al. (2014). Influence of MoO3(110) crystalline plane on its self‐charging photoelectrochemical properties. Sci. Rep. 4: 7428.

23 23 Albu, S.P., Kim, D., and Schmuki, P. (2008). Growth of aligned TiO2 bamboo‐type nanotubes and highly ordered nanolace. Angew. Chem. Int. Ed. 47: 1916–1919.

24 24 Lee, W., Kim, J.‐C., and Gosele, U. (2010). Spontaneous current oscillations during hard anodization of aluminium under potentiostatic conditions. Adv. Funct. Mater. 20: 21–27.

25 25 Sulka, G.D. (2008). Highly Ordered Anodic Porous Alumina Formation by Self‐Organized Anodizing. Weinheim: Wiley‐VCH Verlag GmbH & Co. KGaA. ISBN: 978‐3‐527‐31876‐6.

26 26 Korotcenkov, G. and Cho, B.K. (2010). Silicon porosification: state of the art. Crit. Rev. Solid State Mater. Sci. 35: 153–260.

27 27 Roy, P., Berger, S., and Schumuki, P. (2011). TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50: 2904–2939.

28 28 Chandrasekar, M.S. and Pushpavanam, M. (2008). Pulse and pulse reverse plating – conceptual, advantages and applications. Electrochim. Acta 53: 3313–3322.

29 29 Saji, V.S. (2018). Electrodeposition in bulk metallic glasses. Materialia 3: 1–11.

30 30 Yun, J.‐H., Ng, Y.H., Huang, S. et al. (2011). Wrapping the walls of n‐TiO2 nanotubes with p‐CuInS2 nanoparticles using pulsed‐electrodeposition for improved heterojunction photoelectrodes. Chem. Commun. 47: 11288–11290.

31 31 Tang, Y., Traveerungroj, P., Tan, H.L. et al. (2015). Scaffolding an ultrathin CdS layer on a ZnO nanorod array using pulsed electrodeposition for improved photocharge transport under visible light illumination. J. Mater. Chem. A 3: 19582–19587.

32 32 Tang, Y., Wang, P., Yun, J.H. et al. (2015). Frequency‐regulated pulsed electrodeposition of CuInS2 on ZnO nanorod arrays as visible light photoanodes. J. Mater. Chem. A 3: 15876–15881.

33 33 Ng, C., Iwase, A., Ng, Y.H., and Amal, R. (2012). Transforming anodized WO3 films into visible‐light active Bi2WO6 photoelectrodes by hydrothermal treatment. J. Phys. Chem. Lett. 3: 913–918.

34 34 Lou, S.N., Scott, J., Iwase, A. et al. (2016). Photoelectrochemical water oxidation using a Bi2MoO6/MoO3 heterojunction photoanode synthesised by hydrothermal treatment of an anodised MoO3 thin film. J. Mater. Chem. A 4: 6964–6971.

Heterogeneous Catalysts

Подняться наверх