Читать книгу 3D Printing for Energy Applications - Группа авторов - Страница 37

References

Оглавление

1 1 Chua, C. K., & Leong, K. F. (2017). 3D Printing and Additive Manufacturing: Principles and Applications. The 5th Edition of Rapid Prototyping: Principles and Applications. Singapore: World Scientific Publishing Company. doi:10.1142/10200

2 2 Gibson, I., Rosen, D. W., & Stucker, B. (2010). Additive Manufacturing Technologies: Rapid Prototyping To Direct Digital Manufacturing. New York: Springer. doi:10.1007/978‐1‐4419‐1120‐9

3 3 Wohlers Report (2020). Analysis. Trends. Forecasts. Feel the pulse of the 3D printing industry. Wohlers Associates.

4 4 Hofmann, D. C., Kolodziejska, J., Roberts, S., Otis, R., Dillon, R. P., Suh, J. O., . . . Borgonia, J. P. (2014). Compositionally graded metals: A new frontier of additive manufacturing. Journal of Materials Research, 29(17), 1899–1910. doi:10.1557/jmr.2014.208

5 5 Sobczak, J. J. J., & Drenchev, L. (2013). Metallic functionally graded materials: A specific class of advanced composites. Journal of Materials Science and Technology, 29(4), 297–316. doi:10.1016/j.jmst.2013.02.006

6 6 MacDonald, E., & Wicker, R. (2016). Multiprocess 3D printing for increasing component functionality. Science, 353(6307), aaf2093‐1–aaf2093‐8. doi:10.1126/science.aaf2093

7 7 GE Additive. (n.d.). New manufacturing milestone: 30,000 additive fuel nozzles. Retrieved from https://www.ge.com/additive/stories/new‐manufacturing‐milestone‐30000‐additive‐fuel‐nozzles

8 8 Siemens Global. (n.d.). Additive manufacturing. Energy topics. Retrieved from https://new.siemens.com/global/en/products/energy/topics/additive‐manufacturing.html

9 9 Oerlikon AM. (n.d.). AM in Power Generation. Energy Market. Retrieved from https://www.oerlikon.com/am/en/markets/power‐generationenergy/

10 10 Biome Renewables. (n.d.). PowerCone. Retrieved from https://www.biome‐renewables.com/powercone

11 11 aidro. (n.d.). Additive manufacturing in hydraulics. Retrieved from https://www.aidro.it/3d‐metal‐printing.html

12 12 ORNL. (n.d.). 3D‐printed nuclear reactor promises faster, more economical path to nuclear energy. Retrieved from https://www.ornl.gov/news/3d‐printed‐nuclear‐reactor‐promises‐faster‐more‐economical‐path‐nuclear‐energy

13 13 OPTISYS. (n.d.). High bandwidth antennas. Retrieved from https://www.optisys.tech/blog/tag/Additive‐Manufacturing

14 14 EOS GmbH. (n.d.). Manufacture heat exchangers additively. Retrieved from https://www.eos.info/en/3d‐printing‐examples‐applications/production‐and‐industry/electronical‐components/heatexchanger‐additive‐manufacturing

15 15 Hegab, H. A. (2016). Design for additive manufacturing of composite materials and potential alloys: A review. Manufacturing Review, 3, 1–17. doi:10.1051/mfreview/2016010

16 16 Naebe, M., & Shirvanimoghaddam, K. (2016). Functionally graded materials: A review of fabrication and properties. Applied Materials Today, 5, 223–245. doi:10.1016/j.apmt.2016.10.001

17 17 Loh, G. H., Pei, E., Harrison, D., & Monzón, M. D. (2018). An overview of functionally graded additive manufacturing. Additive Manufacturing, 23, 34–44. doi:10.1016/j.addma.2018.06.023

18 18 Rafiee, M., Farahani, R. D., & Therriault, D. (2020). Multi‐material 3D and 4D printing: A survey. Advanced Science, 7(12), 1902307‐1–1902307‐26. doi:10.1002/advs.201902307

19 19 Pascale, D., & Simion, I. (2018). Multi‐material 3D printer extruder concept. Journal of Industrial Design and Engineering Graphics, 13(1), 25–28.

20 20 Bandyopadhyay, A., & Heer, B. (2018). Additive manufacturing of multi‐material structures. Materials Science and Engineering R: Reports, 129, 1–16.

21 21 Murr, L. E., Gaytan, S. M., Ramirez, D. A., Martinez, E., Hernandez, J., Amato, K. N., . . . Wicker, R. B. (2012). Metal fabrication by additive manufacturing using laser and electron beam melting technologies. Journal of Materials Science and Technology, 28(1), 1–14. doi:10.1016/S1005‐0302(12)60016‐4

22 22 DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., . . . Zhang, W. (2018). Additive manufacturing of metallic components: Process, structure and properties. Progress in Materials Science, 92, 112–224. doi:10.1016/j.pmatsci.2017.10.001

23 23 Gu, D. D., Meiners, W., Wissenbach, K., & Poprawe, R. (2012). Laser additive manufacturing of metallic components: Materials, processes and mechanisms. International Materials Reviews, 57(3), 133–164. doi:10.1179/1743280411Y.0000000014

24 24 Ashby, M. F. (2006). The properties of foams and lattices. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1838), 15–30. doi:10.1098/rsta.2005.1678

25 25 Simone, A. E., & Gibson, L. J. (1998). The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams. Acta Materialia, 46(11), 3929–3935. doi:10.1016/S1359‐6454(98)00072‐X

26 26 Maskery, I., Aboulkhair, N. T., Aremu, A. O., Tuck, C. J., Ashcroft, I. A., Wildman, R. D., & Hague, R. J. M. (2016). A mechanical property evaluation of graded density Al‐Si10‐Mg lattice structures manufactured by selective laser melting. Materials Science and Engineering A, 670, 264–274. doi:10.1016/j.msea.2016.06.013

27 27 Choy, S. Y. S. Y., Sun, C. N. C.‐N., Leong, K. F. K. F., & Wei, J. (2017). Compressive properties of functionally graded lattice structures manufactured by selective laser melting. Materials and Design, 131(June), 112–120. doi:10.1016/j.matdes.2017.06.006

28 28 Li, S., Hassanin, H., Attallah, M. M., Adkins, N. J. E., & Essa, K. (2016). The development of TiNi‐based negative Poisson's ratio structure using selective laser melting. Acta Materialia, 105, 75–83. doi:10.1016/j.actamat.2015.12.017

29 29 Tan, C., Li, S., Essa, K., Jamshidi, P., Zhou, K., Ma, W., & Attallah, M. M. M. M. (2019). Laser powder bed fusion of Ti‐rich TiNi lattice structures: Process optimisation, geometrical integrity, and phase transformations. International Journal of Machine Tools and Manufacture, 141(January), 19–29. doi:10.1016/j.ijmachtools.2019.04.002

30 30 Carluccio, D., Demir, A. G., Bermingham, M. J., & Dargusch, M. S. (2020). Challenges and opportunities in the selective laser melting of biodegradable metals for load‐bearing bone scaffold applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 51, 3311–3334. doi:10.1007/s11661‐020‐05796‐z

31 31 Hazlehurst, K. B., Wang, C. J., & Stanford, M. (2014). An investigation into the flexural characteristics of functionally graded cobalt chrome femoral stems manufactured using selective laser melting. Materials and Design, 60, 177–183. doi:10.1016/j.matdes.2014.03.068

32 32 Ataee, A., Li, Y., Fraser, D., Song, G., & Wen, C. (2018). Anisotropic Ti‐6Al‐4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Materials and Design, 137, 345–354. doi:10.1016/j.matdes.2017.10.040

33 33 Yan, C., Hao, L., Hussein, A., & Young, P. (2015). Ti‐6Al‐4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 51, 61–73. doi:10.1016/j.jmbbm.2015.06.024

34 34 Yu, S., Sun, J., & Bai, J. (2019). Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Materials and Design, 182, 108021. doi:10.1016/j.matdes.2019.108021

35 35 Zhang, X.‐Y., Fang, G., Leeflang, S., Zadpoor, A. A., & Zhou, J. (2019). Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials. Acta Biomaterialia, 84, 437–452. doi:10.1016/j.actbio.2018.12.013

36 36 Nadimpalli, V. K., Dahmen, T., Valente, E. H., Mohanty, S., & Pedersen, D. B. (2019, June 3–7). Multi‐material additive manufacturing of steels using laser powder bed fusion. Proceedings of the 19th International Conference and Exhibition European Society for Precision Engineering and Nanotechnology, Conference, EUSPEN 2019, Bilbao.

37 37 Chen, J., Yang, Y., Song, C., Zhang, M., Wu, S., & Wang, D. (2019). Interfacial microstructure and mechanical properties of 316L /CuSn10 multi‐material bimetallic structure fabricated by selective laser melting. Materials Science and Engineering A, 752, 75–85. doi:10.1016/j.msea.2019.02.097

38 38 Hinojos, A., Mireles, J., Reichardt, A., Frigola, P., Hosemann, P., Murr, L. E., & Wicker, R. B. (2016). Joining of Inconel 718 and 316 Stainless Steel using electron beam melting additive manufacturing technology. Materials and Design, 94, 17–27. doi:10.1016/j.matdes.2016.01.041

39 39 AlMangour, B., Grzesiak, D., & Yang, J. M. (2017). In‐situ formation of novel TiC‐particle‐reinforced 316L stainless steel bulk‐form composites by selective laser melting. Journal of Alloys and Compounds, 706, 409–418. doi:10.1016/j.jallcom.2017.01.149

40 40 Han, C., Li, Y., Wang, Q., Cai, D., Wei, Q., Yang, L., . . . Shi, Y. (2018). Titanium/hydroxyapatite (Ti/HA) gradient materials with quasi‐continuous ratios fabricated by SLM: Material interface and fracture toughness. Materials and Design, 141, 256–266. doi:10.1016/j.matdes.2017.12.037

41 41 Kun, C., Beibei, H. H., Wenheng, W., & Cailin, Z. (2017). The formation mechanism of TiC reinforcement and improved tensile strength in additive manufactured Ti matrix nanocomposite. Vacuum, 143, 23–27. doi:10.1016/j.vacuum.2017.05.029

42 42 Xia, M., Liu, A., Hou, Z., Li, N., Chen, Z., & Ding, H. (2017). Microstructure growth behavior and its evolution mechanism during laser additive manufacture of in‐situ reinforced (TiB+TiC)/Ti composite. Journal of Alloys and Compounds, 728, 436–444. doi:10.1016/j.jallcom.2017.09.033

43 43 Niendorf, T., Leuders, S., Riemer, A., Brenne, F., Tröster, T., Richard, H. A., & Schwarze, D. (2014). Functionally graded alloys obtained by additive manufacturing. Advanced Engineering Materials, 16(7), 857–861. doi:10.1002/adem.201300579

44 44 Koptyug, A., Popov, V. V., Botero Vega, C. A., Jiménez‐Piqué, E., Katz‐Demyanetz, A., Rännar, L. E., & Bäckström, M. (2020). Compositionally‐tailored steel‐based materials manufactured by electron beam melting using blended pre‐alloyed powders. Materials Science and Engineering A, 771(July 2019), 138587‐1–138587‐11. doi:10.1016/j.msea.2019.138587

45 45 Biondani, F. G., Bissacco, G., Mohanty, S., Tang, P. T., & Hansen, H. N. (2020). Multi‐metal additive manufacturing process chain for optical quality mold generation. Journal of Materials Processing Technology, 277, 116451.

46 46 Anstaett, C., Seidel, C., & Reinhart, G. (2017). Fabrication of 3D multi‐material parts using laser‐based powder bed fusion. Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium.

47 47 Aerosint. (n.d.). Selective powder deposition for AM. Retrieved from https://aerosint.com/

48 48 Demir, A. G., & Previtali, B. (2017). Multi‐material selective laser melting of Fe/Al‐12Si components. Manufacturing Letters, 11, 8–11.

49 49 Wei, C., Li, L., Zhang, X., & Chueh, Y.‐H. (2018). 3D printing of multiple metallic materials via modified selective laser melting. CIRP Annals, 67(1), 245–248.

50 50 Bodner, S. C., van de Vorst, L. T. G., Zalesak, J., Todt, J., Keckes, J. F., Maier‐Kiener, V., . . . Keckes, J. (2020). Inconel‐steel multilayers by liquid dispersed metal powder bed fusion: Microstructure, residual stress and property gradients. Additive Manufacturing, 32, 101027‐1–101027‐11. doi:10.1016/j.addma.2019.101027

51 51 Wang, J., Pan, Z., Ma, Y., Lu, Y., Shen, C., Cuiuri, D., & Li, H. (2018). Characterization of wire arc additively manufactured titanium aluminide functionally graded material: Microstructure, mechanical properties and oxidation behaviour. Materials Science and Engineering A, 734, 110–119. doi:10.1016/j.msea.2018.07.097

52 52 FORCE Technology. (n.d.). Large‐scale 3D printing facility. Retrieved from https://forcetechnology.com/en/all‐industry‐facilities/large‐scale‐3d‐printing‐facility

53 53 Stavropoulos, P., Foteinopoulos, P., Papacharalampopoulos, A., & Bikas, H. (2018). Addressing the challenges for the industrial application of additive manufacturing: Towards a hybrid solution. International Journal of Lightweight Materials and Manufacture, 1(3), 157–168. doi:10.1016/j.ijlmm.2018.07.002

54 54 Lundin, C. D. (1982). Dissimilar metal welds: Transition joints literature review. Welding Journal (Miami, Fla), 61(2), 58‐s–63‐s.

55 55 Chen, N., Khan, H. A., Wan, Z., Lippert, J., Sun, H., Shang, S.‐L., . . . Li, J. (2020). Microstructural characteristics and crack formation in additively manufactured bimetal material of 316L stainless steel and Inconel 625. Additive Manufacturing, 32, 101037‐1–101037‐16. doi:10.1016/j.addma.2020.101037

56 56 Anderson, R., Terrell, J., Schneider, J., Thompson, S., & Gradl, P. (2019). Characteristics of bi‐metallic interfaces formed during direct energy deposition additive manufacturing processing. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 50(4), 1921–1930. doi:10.1007/s11663‐019‐01612‐1

57 57 Li, P., Gong, Y., Xu, Y., Qi, Y., Sun, Y., & Zhang, H. (2019). Inconel‐steel functionally bimetal materials by hybrid directed energy deposition and thermal milling: Microstructure and mechanical properties. Archives of Civil and Mechanical Engineering, 19(3), 820–831. doi:10.1016/j.acme.2019.03.002

58 58 Shang, C., Wang, C., Xu, G., Li, C., & You, J. (2019). Laser additive manufacturing of TA15: Inconel 718 bimetallic structure via Nb/Cu multi‐interlayer. Vacuum, 169(July), 108888. doi:10.1016/j.vacuum.2019.108888

59 59 Savitha, U., Srinivas, V., Jagan Reddy, G., Gokhale, A. A., & Sundararaman, M. (2018). Additive laser deposition of YSZ on Ni base superalloy for thermal barrier application. Surface and Coatings Technology, 354, 257–267. doi:10.1016/j.surfcoat.2018.08.089

60 60 Zuback, J. S., Palmer, T. A., & DebRoy, T. (2019). Additive manufacturing of functionally graded transition joints between ferritic and austenitic alloys. Journal of Alloys and Compounds, 770, 995–1003. doi:10.1016/j.jallcom.2018.08.197

61 61 Lu, Y., Huang, Y., & Wu, J. (2018). Laser additive manufacturing of structural‐graded bulk metallic glass. Journal of Alloys and Compounds, 766, 506–510. doi:10.1016/j.jallcom.2018.06.259

62 62 Liu, Y., Liang, C., Liu, W., Ma, Y., Liu, C., & Zhang, C. (2018). Dilution of Al and V through laser powder deposition enables a continuously compositionally Ti/Ti6Al4V graded structure. Journal of Alloys and Compounds, 763, 376–383. doi:10.1016/j.jallcom.2018.05.289

63 63 Bobbio, L. D., Otis, R. A., Borgonia, J. P., Dillon, R. P., Shapiro, A. A., Liu, Z.‐K., & Beese, A. M. (2017). Additive manufacturing of a functionally graded material from Ti‐6Al‐4V to Invar: Experimental characterization and thermodynamic calculations. Acta Materialia, 127, 133–142. doi:10.1016/j.actamat.2016.12.070

64 64 Nartu, M. S. K. K. Y., Mantri, S. A., Pantawane, M. V., Ho, Y.‐H., McWilliams, B., Cho, K., . . . Banerjee, R. (2020). In situ reactions during direct laser deposition of Ti‐B<inf>4</inf>C composites. Scripta Materialia, 183, 28–32. doi:10.1016/j.scriptamat.2020.03.021

65 65 Traxel, K. D., & Bandyopadhyay, A. (2020). Naturally architected microstructures in structural materials via additive manufacturing. Additive Manufacturing, 34, 101243‐1–101243‐14. doi:10.1016/j.addma.2020.101243

66 66 Lanfant, B., Bär, F., Mohanta, A., & Leparoux, M. (2019). Fabrication of metal matrix composite by laser metal deposition‐a new process approach by direct dry injection of nanopowders. Materials, 12(21), 3584‐1–3584‐16. doi:10.3390/ma12213584

67 67 Hu, Y., Cong, W., Wang, X., Li, Y., Ning, F., & Wang, H. (2018). Laser deposition‐additive manufacturing of TiB‐Ti composites with novel three‐dimensional quasi‐continuous network microstructure: Effects on strengthening and toughening. Composites Part B: Engineering, 133, 91–100. doi:10.1016/j.compositesb.2017.09.019

68 68 Li, F., Gao, Z., Li, L., & Chen, Y. (2016). Microstructural study of MMC layers produced by combining wire and coaxial WC powder feeding in laser direct metal deposition. Optics and Laser Technology, 77, 134–143. doi:10.1016/j.optlastec.2015.09.018

69 69 Hofmann, D. C., Roberts, S., Otis, R., Kolodziejska, J., Dillon, R. P., Suh, J.‐O., . . . Borgonia, J.‐P. (2014). Developing gradient metal alloys through radial deposition additive manufacturing. Scientific Reports, 4, 5357‐1–5357‐8. doi:10.1038/srep05357

70 70 Heer, B., & Bandyopadhyay, A. (2018). Compositionally graded magnetic‐nonmagnetic bimetallic structure using laser engineered net shaping. Materials Letters, 216, 16–19. doi:10.1016/j.matlet.2017.12.129

71 71 Akinlabi, E. T., & Akinlabi, S. A. (2014). Friction stir welding of dissimilar metals. In M.‐K. Besharati‐Givi & P. Asadi (Eds.), Advances in Friction‐Stir Welding and Processing. Cambridge: Woodhead Publishing. doi:10.1533/9780857094551.241

72 72 Domack, M. S., & Baughman, J. M. (2005). Development of nickel‐titanium graded composition components. Rapid Prototyping Journal, 11(1), 41–51. doi:10.1108/13552540510573383

73 73 Dilip, J. J. S., & Ram, G. D. J. (2013). Microstructure evolution in aluminum alloy AA 2014 during multi‐layer friction deposition. Materials Characterization, 86, 146–151.

74 74 Yin, S., Cavaliere, P., Aldwell, B., Jenkins, R., Liao, H., Li, W., & Lupoi, R. (2018). Cold spray additive manufacturing and repair: Fundamentals and applications. Additive Manufacturing, 21, 628–650.

75 75 Yin, S., Yan, X., Chen, C., Jenkins, R., Liu, M., & Lupoi, R. (2018). Hybrid additive manufacturing of Al‐Ti6Al4V functionally graded materials with selective laser melting and cold spraying. Journal of Materials Processing Technology, 255, 650–655. doi:10.1016/j.jmatprotec.2018.01.015

76 76 Nadimpalli, V. K., & Nagy, P. B. (2018). Designing an in‐situ ultrasonic nondestructive evaluation system for ultrasonic additive manufacturing. AIP Conference Proceedings, 1949, 020005‐1–020005‐9. doi:10.1063/1.5031502

77 77 Nadimpalli, V. K., Yang, L., & Nagy, P. B. (2018). In‐situ interfacial quality assessment of Ultrasonic Additive Manufacturing components using ultrasonic NDE. NDT and E International, 93, 117–130. doi:10.1016/j.ndteint.2017.10.004

78 78 Sridharan, N., Wolcott, P., Dapino, M., & Babu, S. S. S. S. (2017). Microstructure and mechanical property characterisation of aluminium–steel joints fabricated using ultrasonic additive manufacturing. Science and Technology of Welding and Joining, 22(5), 373–380. doi:10.1080/13621718.2016.1249644

79 79 Wolcott, P. J. J., Sridharan, N., Babu, S. S. S., Miriyev, A., Frage, N., & Dapino, M. J. J. (2016). Characterisation of Al–Ti dissimilar material joints fabricated using ultrasonic additive manufacturing. Science and Technology of Welding and Joining, 21(2), 114–123. doi:10.1179/1362171815Y.0000000072

80 80 Stucker, B. E., Obielodan, J. O., Ceylan, A., & Murr, L. E. (2010). Multi‐material bonding in ultrasonic consolidation. Rapid Prototyping Journal, 16(3), 180–188. doi:10.1108/13552541011034843

81 81 Kumar, S., & Kruth, J.‐P. (2010). Composites by rapid prototyping technology. Materials and Design, 31(2), 850–856. doi:10.1016/j.matdes.2009.07.045

82 82 Guo, H., Gingerich, M. B., Headings, L. M., Hahnlen, R., & Dapino, M. J. (2019). Joining of carbon fiber and aluminum using ultrasonic additive manufacturing (UAM). Composite Structures, 208, 180–188. doi:10.1016/j.compstruct.2018.10.004

83 83 Yang, Y., Janaki Ram, G. D. D., & Stucker, B. E. E. (2009). Bond formation and fiber embedment during ultrasonic consolidation. Journal of Materials Processing Technology, 209(10), 4915–4924. doi:10.1016/j.jmatprotec.2009.01.014

84 84 Obielodan, J., & Stucker, B. (2014). A fabrication methodology for dual‐material engineering structures using ultrasonic additive manufacturing. International Journal of Advanced Manufacturing Technology, 70(1–4), 277–284. doi:10.1007/s00170‐013‐5266‐5

85 85 Dapino, M. J. (2014). Smart structure integration through ultrasonic additive manufacturing. ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014, 2. 10.1115/SMASIS20147710.

86 86 Hehr, A., Wenning, J., Terrani, K., Babu, S. S., & Norfolk, M. (2017). Five‐axis ultrasonic additive manufacturing for nuclear component manufacture. JOM, 69(3), 485–490. doi:10.1007/s11837‐016‐2205‐6

87 87 Petrie, C. M. C. M., Sridharan, N., Subramanian, M., Hehr, A., Norfolk, M., & Sheridan, J. (2019). Embedded metallized optical fibers for high temperature applications. Smart Materials and Structures, 28(5), 055012‐1–055012‐33. doi:10.1088/1361‐665X/ab0b4e

88 88 Bournias‐Varotsis, A., Friel, R. J., Harris, R. A., & Engstrøm, D. S. (2018). Ultrasonic Additive Manufacturing as a form‐then‐bond process for embedding electronic circuitry into a metal matrix. Journal of Manufacturing Processes, 32, 664–675. doi:10.1016/j.jmapro.2018.03.027

89 89 Sriraman, M. R., Babu, S. S., & Short, M. (2010). Bonding characteristics during very high power ultrasonic additive manufacturing of copper. Scripta Materialia, 62(8), 560–563. doi:10.1016/j.scriptamat.2009.12.040

90 90 Janaki Ram, G. D., Yang, Y., & Stucker, B. E. (2006). Effect of process parameters on bond formation during ultrasonic consolidation of aluminum alloy 3003. Journal of Manufacturing Systems, 25(3), 221–238. doi:10.1016/S0278‐6125(07)80011‐2

91 91 Fabrisonic. (n.d.). Embedding sensors and electronics. Retrieved from https://fabrisonic.com/applications/

92 92 Gonzalez‐Gutierrez, J., Cano, S., Schuschnigg, S., Kukla, C., Sapkota, J., & Holzer, C. (2018). Additive manufacturing of metallic and ceramic components by the material extrusion of highly‐filled polymers: A review and future perspectives. Materials, 11(5), 840‐1–840‐36. doi:10.3390/ma11050840

93 93 Pedersen, D. B., Andersen, S. A., & Hansen, H. N. (2019). Measurements in Additive Manufacturing (pp. 369–397). USA: Springer. doi:10.1007/978‐981‐10‐4938‐5_13

94 94 Holo Additive Manufacturing. (n.d.). PureForm Technology. Retrieved from https://holoam.com/technology/

95 95 Salcedo, E., Baek, D., Berndt, A., & Ryu, J. E. (2018). Simulation and validation of three dimension functionally graded materials by material jetting. Additive Manufacturing, 22, 351–359. doi:10.1016/j.addma.2018.05.027

96 96 Sufiiarov, V., Polozov, I., Kantykov, A., & Khaidorov, A. (2020). Binder jetting additive manufacturing of 420 stainless steel: Densification during sintering and effect of heat treatment on microstructure and hardness. Materials Today: Proceedings.

97 97 Thompson, Y., Gonzalez‐Gutierrez, J., Kukla, C., & Felfer, P. (2019). Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel. Additive Manufacturing, 30, 100861.

98 98 Larsen, U. D., Signund, O., & Bouwsta, S. (1997). Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio. Journal of Microelectromechanical Systems, 6(2), 99–106.

99 99 Takezawa, A., Kobashi, M., & Kitamura, M. (2015). Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing. APL Materials, 3(7), 76103.

100 100 Andersen, P. R., Henríquez, V. C., & Aage, N. (2019). Shape optimization of micro‐acoustic devices including viscous and thermal losses. Journal of Sound and Vibration, 447, 120–136.

101 101 Wu, J., Aage, N., Westermann, R., & Sigmund, O. (2017). Infill optimization for additive manufacturing: Approaching bone‐like porous structures. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1127–1140.

102 102 Martin, J. J., Fiore, B. E., & Erb, R. M. (2015). Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nature Communications, 6, 8641‐1–8641‐7. doi:10.1038/ncomms9641

103 103 Abel, J., Scheithauer, U., Janics, T., Hampel, S., Cano, S., Müller‐Köhn, A., . . . Moritz, T. (2019). Fused Filament Fabrication (FFF) of metal‐ceramic components. JoVE (Journal of Visualized Experiments), 143, e57693.

3D Printing for Energy Applications

Подняться наверх